Reverse Engineering Malware
Binary Obfuscation and Protection

Jarkko Turkulainen

F-Secure Corporation

Protecting the irreplaceable | f-secure.com

|
F-Secure

Binary Obfuscation and Protection

What is covered in this presentation:

Java and JavaScript shrinkers and obfuscators are not covered here!

Runtime packers

Compression algorithms

Packer identification

Unpacking strategies

Unpacking examples on simple systems

Custom protection systems

2 March 14, 2012

Ty
F-Secure "

Overview of runtime packers

* Runtime packer combines a compressed executable file with a decompressor
in a single executable file

 Packers are used to shrink the size of executables

» Because the data is compressed, it usually not clear-text, also acting as
protective layer

» Packers are also used for protecting executables against debugging,
dumping and disassembling

* Most modern malware use some sort of runtime packer
» |[f static analysis of malware is needed, protective layer(s) must be opened
» Tens of different runtime packers easily available

 Some advanced systems are commercial

—
3 March 14, 2012 F-Secure "y

Compression algorithms

« Statistical
« Data symbols are replaced with symbols requiring smaller amount of data
« Common symbols are presented with fewer bits than less common ones
* Symbol table is included with the data
« Example: Huffman coding
» Dictionary-based
« Data symbols are stored in a dictionary
 Compressed data references to the dictionary
« Static: dictionary included with the data
« Sliding window: dictionary is based on previously seen input data

« Example: LZ

—
4 March 14, 2012 F-Secure "y

Common packers

o UPX (Ultimate Packer for eXecutables). Simple runtime packer. Supports
multiple target platforms. Compression algorithms: UCL, LZMA (both LZ-
based dictionary models)

 FSG: Simple packer for Win32. Compression: aplib (LZ-based)
« MEW: Simple packer for Win32 (aplib)

 NSPACK: Simple packer for Win32 (LZMA)

o UPACK: Simple packer for Win32 (aplib)

—
5 March 14, 2012 F-Secure "y

Simple packers

* Most common packers are very simple (UPX, FSG etc.)
* Single-process, (usually) single-thread

» Single-layer compression/encryption

* Might use some trivial anti-debug tricks

* Doesn’t modify the code itself (works at link-level)

* Implementation not necessarily simple!

—
6 March 14, 2012 F-Secure "y

Complex packers

» Uses multiple processes and threads

* Multi-layer encryption (page, routine, block)

» Advanced anti-debugging techniques

» Code abstraction (metamorphic, virtual machines etc.)

 Examples: Armadillo, Sdprotect, ExeCrypt, VMProtect

~—
7 March 14, 2012 F-Secure "y

Packer platforms

» Almost all packers run on Windows and DOS
o UPX is a notable exception (Linux, OSX, BSD, different CPU platforms)
* Android:

 UPX supports Linux/ARM, so at least in theory Android native shared
libraries could be packed

 OT: Classes in DEX files can be packed with Java packers and then
converted to Dalvik

—
8 March 14, 2012 F-Secure "y

Anatomy of typical packed file

 Weird PE section names

» Sections are very dense (high Shannon’s entropy)
« Small amount of imported functions

* Entry code looks bogus

(HT Demo)

~—
9 March 14, 2012 F-Secure "y

How typical packer runtime works

1. Original data is located somewhere in the packer code data section
2. Original data is uncompressed to the originally linked location

3. Control is transferred to original code entry point (OEP)

Packed executable QOriginal executable

PE headers PE headers

403592

: program entry point

entrypoint :

push ebp
403593 nou ebp, esp
403595 push
403597 push data_404218
40359c push offzet_4036f0
4035a1 nov eax, fs:[0]
4035a7 push eax
4035a8 nov f=:[01, esp
4035af sub esp,
4035b2 push ebx
4035b3 push esi
4035b4 push edi
4035h5 nov [ebp-18h1, esp

; program entry point

entrypoint:

pushad

mou esi, offset_41c000
lea edi, [esi- 1
push edi

or ebp,

Jmp loc_42aecz

—
10 March 14, 2012 F-Secure “g*

Anti-* tricks

 Complex packers utilize lots of tricks to fool debuggers, disassembilers,
dumpers etc.

 Example anti-debugging trick: debug-bit in PEB (Windows API:
IsDebuggerPresent)

* For more details, see lecture slides “Dynamic Analysis I”

(PEB demo)

~—
11 March 14, 2012 F-Secure "y

How to identify packers

* Known characteristics of PE envelope (section hames, entry point code etc.)

* PE identification utilities (for example: PEID)

* Not foolproof!

12 March 14, 2012

COFF header

optional header

optional header: NT fields

optional header: direciories

section header- O: UPX0 rua Q0001000 usize OO0O1hOOO
section header 1: UPX1 rua 0001c000 usize OO0QOFOO0
section header 2: rua QO0ZbO00 usize OO0Q01000

-
F-Secure "

Unpacking strategies

» Static unpacking
e Unpacking without actually running the file
e Algorithm-specific
» Very difficult and time-consuming to implement
» Fast, reliable
o System-independent
e Dynamic (live) unpacking
» Generic
* Low-cost, easy to implement
* Needs to be run on native platform
 Combined approach (emulators)
» Flexibility of dynamic unpacking + security of static unpacking

« Extremely hard to implement

—
13 March 14, 2012 F-Secure "y

Static unpacking

* Requires knowledge about the routines and algorithms used by the packer

» Unpacking is basically just static implementation of the work done by
unpacker stub when the file is run:

» Locate the original data
* Uncompress and/or decrypt the data
* Fix imports, exports, resources etc. data structures

» Some packers include unpacker that can completely restore the original file
(well, at least UPX has it with —d option)

e The file is not run - secure and fast

(UPX + PEID demo)

—
14 March 14, 2012 F-Secure "y

Dynamic unpacking

» |dea: let the program run on a real system and unpack itself
* Needs isolated, real machine (VMWare might not be good enough!)

» Basic tools are freely available (hex editors, debuggers etc.)

~—
15 March 14, 2012 F-Secure "y

Dynamic unpacking with debugger

Packed file is opened with debugger, or debugger is attached to already
running target

Let the packer stub run and unpack the original program

Save the unpacked data to disk or analyze using tools provided by the
debugger

Problems with debugger:
* Debugger detection (PEB debug bit, anti-debug tricks etc.)

* Debugger attacks (throwing exceptions etc.)

16

—
March 14, 2012 F-Secure "y

Dynamic unpacking with dumping

 Run the file

e Dump the process memory on disk, pseudo code:

void Dump(DWORD pid)

{
BYTE buf[PAGE_SIZE];
DWORD address, written;
HANDLE hFile = CreateFile("dump.dat", GENERIC_WRITE,
0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
HANDLE hProcess = OpenProcess(PROCESS_VM_READ, FALSE, pid);
for (address = 0; address < 0x80000000; address += PAGE_SIZE)
{
if (ReadProcessMemory(hProcess, (LPvOID)address, buf, PAGE_SIZE, NULL))
{
writeFile(hFile, buf, PAGE_SIZE, &written, NULL);
}
}
}

~—
17 March 14, 2012 F-Secure "y

PE reconstruction

Dumped image is more usable if it can be opened with RE tools like IDA
PE envelope needs to be build around the dumped image:

 The image can be mapped as a single section

» Original Entry Point (OEP) needs to be figured out

e Import Address Table (IAT) needs to be reconstructed

IAT reconstruction can cause lot of problems:

o Packers build IAT dynamically

» |AT entries may not be direct addresses to the imported function, it can be
some kind of trampoline

OEP can be tricky to find

Tools like ImpRec and OllyDump can automate the reconstruction process

18

—
March 14, 2012 F-Secure "y

Examples: unpacking simple packers

* Try to identify the packer based on PE characteristics
» Use static unpacking tools (if available)

* Use dynamic methods (OllyDbg/Immunity)

(Demo)

~—
19 March 14, 2012 F-Secure "y

Example unpacking tool: FIST

o FIST is a proprietary tool for generic unpacking

e Based on hooking Win32 function calls:
e Code in the return address of Win32 call is compared to the disk image
» If code is not on disk, it is most likely dynamically generated
 OEP can be found by tracing back to known function prolog signatures

* Note that disk image needs to be mapped to virtual addresses (most
simple way to do this is to execute an instance of the image as suspended
and use that as a base disk image)

Demo: Unpacking example files with FIST

—
20 March 14, 2012 F-Secure "y

If this looks too simple...

* Live unpacking of simple envelopes is easy, BUT...
* Imports are usually lost in the unpacking process

* Debuggers are often very unreliable, they can be detected (even when
attaching!)

 Complex protection systems are becoming more popular

 Malware can also use “custom protection systems”

—
21 March 14, 2012 F-Secure "y

Complex protection system example: VMProtect

* Protects selected parts of the program with virtual machine

» Also has additional layers of protection: obfuscation, anti-debugging etc.

|0, et | b Hex Wiewm-a, | x ﬂ Structures | ¥ En Enums | x I% Impartz | x Sﬁ Exports |

1~ .ump@:A88484B8BEC jmp fetchAndDecode
SUmp A ABaBLBC] [
-ump@:@e4e408c1 ; START OF FUNCTIOW CHUMK FOR _main
-ump @: 804840C1
-ump@:8848408C1 UHStart: ; CODE XREF: main+5Tj
-ump @: 804840C1 ; -text:aau@ie12T
-ump 8: 804840C1 pushf
-ump 8: 8848408C2 pusha
-vmp@:ease4ec3 push a
-ump @8:86848408C8 mov esi, [esp+2Ch+var_ 4]
-ump 8: 884848CC mov edi, offset cpuContext
-ump @: 80484001 cld
-ump 8: 868484802 add esi, [esp+2Ch+var_2C]
-vmp @: 884840805
-ump@: 804840805 fetchAndDecode: ; CODE XREF: _text:@sa@isict;
-ump 8: 868484805 ; -text:-eeneip26t§ ...
—** .ump@: 88484805 mov dl, [esi]
-vmpB: 88484807 inc esi
-ump @: 8684840808 mouzx eax, dl
-ump 8: 884840808 jmp ds:opcodeTable[eax=4]
-ump@:804048DE ; EHD OF FUHMCTION CHUNE FOR _main

(Demo)

P
22 March 14, 2012 F-Secure "¢’

Custom protections systems

» Usually works at compiler-level (integrates with the source code)

 Most common case is data encryption with some simple algorithm, like bit-
wise ADD/XOR/etc.

* Sometimes a bit heavier toolset is required: IDA, IDAPython (python scripting
for IDA)

» Live unpacking with debuggers might also solve some custom system cases
as well!

—
23 March 14, 2012 F-Secure "y

Example custom system: Bobic worm string
encryption

File Edit Jump Search View Debug Options Window
gy - =
UPX0: 1000BCAB loc_1000BCAB:
UPX0: 1000BCAB lea eax, [ebp—0BOh]
UPX0:1000BCE1 push eax
IPx0: 1000BCB2 nou dword ptr [ebp+10hl, off=set alhHAe?LuhollUsc
UPX0: 1000BCE9 nou dword ptr [ebp+14hl, offset aBuSp_ xRU17euvbo
UPX0: 1000BCCO nov dword ptr [ebp+18hl, offset adklpuvtEQoadf 1
UPX0: 1000BCC? nou dword ptr [ebp+1Chl, offset aY¥EGaCIfFnFII59
UPX0: 1000BCCE call sub_1000C5A8
U lBRl File Edit Jump Search UView Debug OUptions Window
urxe:ieeob” ¢ oQme8 — O OO OO IDA View-A
UPX0:1000B! ||)pxg: 1000BCAB loc_1000BCAR:
UPX0:1000B | jpx0 : 1000BCAB lea eax, [ebp-OBOh]
UPX0:1000B || pxo : 1000BCE1 push eax
UPX0: 10008 | ypxg : 1000BCBZ mov dword ptr [ebp+10hl, offset aWhHAe?LuholVsc
UPX0: 10008 |px : 1000BCBI mou dword ptr [ebp+14hl, offset aBuSp_xRU17eubo
UPX0: 10008 |px0 : 1000BCCO mou dword ptr [ebp+18hl, offset adklputEQoa@f_1
UPX0: 16008 |pyg : 1000BCC? mou dword ptr [ebp+1Ch]l, offset aY@GaCIfFnFII59
UPX0:1000B! | pxgq : 1000BCCE call sub_1000C5A8
UPX0: 10008 | pyg : 1000BCD3 push 4
Hﬁig;igggg UPX0 : 1000BCDS pop ecx

: UPX0 : 1000BCD6 cdg
UPX0 : 1000BCD? idiv ecx
UPX0 :1000BCDI lea ecx, [ebp-0aBhl
UPX0 : 1000BCDF push dword ptr [ebp+edx=1+10h]
UPX0 : 1000BCE3 call sub_1000CBE?
LIPX0 : 1000BCES nou ECX, Bax
UPX0 : 1000BCEnA call decrypt
UPX0 : 1000BCEF push eax
UPX0 : 1000BCFO lea eax, [ebp+48h]
UPX0 : 1000BCF3 push offset aHttp
UPX0 : 1000BCF8 push eax

24 March 14, 2012 F-Secure "

Conclusions

* Live unpacking is easy and cost-effective way to handle most malware

» For handling complex protection systems, custom decryptors, tracers and
memory dumpers must be implemented

Thanks for your patience!

~—
25 March 14, 2012 F-Secure "y

Further reading

* Wikipedia on runtime packing -
http://en.wikipedia.org/wiki/Executable compression

« UPX - http://upx.sourceforge.net/

» |IDAPython - http://d-dome.net/idapython

 “Runtime Packers: The Hidden Problem?” -
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf

* “The Art of Unpacking” - https://www.blackhat.com/presentations/bh-usa-
07/Yason/Presentation/bh-usa-07-yason.pdf

Bobic worm description: http://www.f-secure.com/v-descs/bobic_k.shtml

~—
26 March 14, 2012 F-Secure "y

Protecting
the
irreplaceable

F-Secure.

