
Protecting the irreplaceable | f-secure.com

Reverse Engineering Malware
Binary Obfuscation and Protection
Jarkko Turkulainen

F-Secure Corporation

Binary Obfuscation and Protection

What is covered in this presentation:

• Runtime packers

• Compression algorithms

• Packer identification

• Unpacking strategies

• Unpacking examples on simple systems• Unpacking examples on simple systems

• Custom protection systems

Java and JavaScript shrinkers and obfuscators are not covered here!

March 14, 20122

Overview of runtime packers

• Runtime packer combines a compressed executable file with a decompressor
in a single executable file

• Packers are used to shrink the size of executables

• Because the data is compressed, it usually not clear-text, also acting as
protective layer

• Packers are also used for protecting executables against debugging,
dumping and disassemblingdumping and disassembling

• Most modern malware use some sort of runtime packer

• If static analysis of malware is needed, protective layer(s) must be opened

• Tens of different runtime packers easily available

• Some advanced systems are commercial

March 14, 20123

Compression algorithms

• Statistical

• Data symbols are replaced with symbols requiring smaller amount of data

• Common symbols are presented with fewer bits than less common ones

• Symbol table is included with the data

• Example: Huffman coding

• Dictionary-based

• Data symbols are stored in a dictionary

• Compressed data references to the dictionary

• Static: dictionary included with the data

• Sliding window: dictionary is based on previously seen input data

• Example: LZ

March 14, 20124

Common packers

• UPX (Ultimate Packer for eXecutables). Simple runtime packer. Supports
multiple target platforms. Compression algorithms: UCL, LZMA (both LZ-
based dictionary models)

• FSG: Simple packer for Win32. Compression: aplib (LZ-based)

• MEW: Simple packer for Win32 (aplib)

• NSPACK: Simple packer for Win32 (LZMA)

• UPACK: Simple packer for Win32 (aplib)

March 14, 20125

Simple packers

• Most common packers are very simple (UPX, FSG etc.)

• Single-process, (usually) single-thread

• Single-layer compression/encryption

• Might use some trivial anti-debug tricks

• Doesn’t modify the code itself (works at link-level)

• Implementation not necessarily simple!• Implementation not necessarily simple!

March 14, 20126

Complex packers

• Uses multiple processes and threads

• Multi-layer encryption (page, routine, block)

• Advanced anti-debugging techniques

• Code abstraction (metamorphic, virtual machines etc.)

• Examples: Armadillo, Sdprotect, ExeCrypt, VMProtect

March 14, 20127

Packer platforms

• Almost all packers run on Windows and DOS

• UPX is a notable exception (Linux, OSX, BSD, different CPU platforms)

• Android:

• UPX supports Linux/ARM, so at least in theory Android native shared
libraries could be packed

• OT: Classes in DEX files can be packed with Java packers and then • OT: Classes in DEX files can be packed with Java packers and then
converted to Dalvik

March 14, 20128

Anatomy of typical packed file

• Weird PE section names

• Sections are very dense (high Shannon’s entropy)

• Small amount of imported functions

• Entry code looks bogus

(HT Demo)(HT Demo)

March 14, 20129

How typical packer runtime works

1. Original data is located somewhere in the packer code data section

2. Original data is uncompressed to the originally linked location

3. Control is transferred to original code entry point (OEP)

March 14, 201210

Anti-* tricks

• Complex packers utilize lots of tricks to fool debuggers, disassemblers,
dumpers etc.

• Example anti-debugging trick: debug-bit in PEB (Windows API:
IsDebuggerPresent)

• For more details, see lecture slides “Dynamic Analysis I”

(PEB demo)

March 14, 201211

How to identify packers

• Known characteristics of PE envelope (section names, entry point code etc.)

• PE identification utilities (for example: PEiD)

• Not foolproof!

March 14, 201212

Unpacking strategies

• Static unpacking

• Unpacking without actually running the file

• Algorithm-specific

• Very difficult and time-consuming to implement

• Fast, reliable

• System-independent

• Dynamic (live) unpacking

• Generic

• Low-cost, easy to implement

• Needs to be run on native platform

• Combined approach (emulators)

• Flexibility of dynamic unpacking + security of static unpacking

• Extremely hard to implement

March 14, 201213

Static unpacking

• Requires knowledge about the routines and algorithms used by the packer

• Unpacking is basically just static implementation of the work done by
unpacker stub when the file is run:

• Locate the original data

• Uncompress and/or decrypt the data

• Fix imports, exports, resources etc. data structures• Fix imports, exports, resources etc. data structures

• Some packers include unpacker that can completely restore the original file
(well, at least UPX has it with –d option)

• The file is not run - secure and fast

(UPX + PEID demo)

March 14, 201214

Dynamic unpacking

• Idea: let the program run on a real system and unpack itself

• Needs isolated, real machine (VMWare might not be good enough!)

• Basic tools are freely available (hex editors, debuggers etc.)

March 14, 201215

Dynamic unpacking with debugger

• Packed file is opened with debugger, or debugger is attached to already
running target

• Let the packer stub run and unpack the original program

• Save the unpacked data to disk or analyze using tools provided by the
debugger

• Problems with debugger:

• Debugger detection (PEB debug bit, anti-debug tricks etc.)

• Debugger attacks (throwing exceptions etc.)

March 14, 201216

Dynamic unpacking with dumping

• Run the file

• Dump the process memory on disk, pseudo code:

void Dump(DWORD pid)

{

BYTE buf[PAGE_SIZE];

DWORD address, written;

HANDLE hFile = CreateFile("dump.dat", GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

HANDLE hProcess = OpenProcess(PROCESS_VM_READ, FALSE, pid);

for (address = 0; address < 0x80000000; address += PAGE_SIZE)

{

if (ReadProcessMemory(hProcess, (LPVOID)address, buf, PAGE_SIZE, NULL))

{

WriteFile(hFile, buf, PAGE_SIZE, &written, NULL);

}

}

}

March 14, 201217

PE reconstruction

• Dumped image is more usable if it can be opened with RE tools like IDA

• PE envelope needs to be build around the dumped image:

• The image can be mapped as a single section

• Original Entry Point (OEP) needs to be figured out

• Import Address Table (IAT) needs to be reconstructed

• IAT reconstruction can cause lot of problems:• IAT reconstruction can cause lot of problems:

• Packers build IAT dynamically

• IAT entries may not be direct addresses to the imported function, it can be
some kind of trampoline

• OEP can be tricky to find

• Tools like ImpRec and OllyDump can automate the reconstruction process

March 14, 201218

Examples: unpacking simple packers

• Try to identify the packer based on PE characteristics

• Use static unpacking tools (if available)

• Use dynamic methods (OllyDbg/Immunity)

(Demo)

March 14, 201219

Example unpacking tool: FIST

• FIST is a proprietary tool for generic unpacking

• Based on hooking Win32 function calls:

• Code in the return address of Win32 call is compared to the disk image

• If code is not on disk, it is most likely dynamically generated

• OEP can be found by tracing back to known function prolog signatures

• Note that disk image needs to be mapped to virtual addresses (most • Note that disk image needs to be mapped to virtual addresses (most
simple way to do this is to execute an instance of the image as suspended
and use that as a base disk image)

Demo: Unpacking example files with FIST

March 14, 201220

If this looks too simple…

• Live unpacking of simple envelopes is easy, BUT...

• Imports are usually lost in the unpacking process

• Debuggers are often very unreliable, they can be detected (even when
attaching!)

• Complex protection systems are becoming more popular

• Malware can also use “custom protection systems”• Malware can also use “custom protection systems”

March 14, 201221

Complex protection system example: VMProtect

• Protects selected parts of the program with virtual machine

• Also has additional layers of protection: obfuscation, anti-debugging etc.

March 14, 201222

(Demo)

Custom protections systems

• Usually works at compiler-level (integrates with the source code)

• Most common case is data encryption with some simple algorithm, like bit-
wise ADD/XOR/etc.

• Sometimes a bit heavier toolset is required: IDA, IDAPython (python scripting
for IDA)

• Live unpacking with debuggers might also solve some custom system cases
as well!as well!

March 14, 201223

Example custom system: Bobic worm string
encryption

March 14, 201224

Conclusions

• Live unpacking is easy and cost-effective way to handle most malware

• For handling complex protection systems, custom decryptors, tracers and
memory dumpers must be implemented

Thanks for your patience!

March 14, 201225

Further reading

• Wikipedia on runtime packing -
http://en.wikipedia.org/wiki/Executable_compression

• UPX - http://upx.sourceforge.net/

• IDAPython - http://d-dome.net/idapython

• “Runtime Packers: The Hidden Problem?” -
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf

• “The Art of Unpacking” - https://www.blackhat.com/presentations/bh-usa-
07/Yason/Presentation/bh-usa-07-yason.pdf

• Bobic worm description: http://www.f-secure.com/v-descs/bobic_k.shtml

March 14, 201226

