T-110.5230 Special Course in Practical Security of Information Systems

Introduction to the course Topic selection

22.1.2009

Outline

- Basic course information
- Student introductions & pairing up
- Topic selection (+ some old topics)
- Other issues

- T-110.5230 Special Course in Practical Security of Information Systems
 - 4 credits, post-graduate level
- Course language = English
 - Lectures, slides, web
 - Student presentation in English
- Course staff
 - Sami Vaarala (lecturer), Antti Nuopponen (assistant)
- Contact information
 - Web (noppa): https://noppa.tkk.fi/noppa/kurssi/t-110.5230/
 - E-mail: t-110.5230@tml.hut.fi
- All course information is on the course web page
 - Student group and topic related pages are not public (e.g. indexed by Google) but available to Noppa users
 - Confidential topics are handled outside Noppa entirely (more about this later)

Learning goal

- Security through attack and defense in practice
- Systematic information search, practical exploits, documentation
- Heavily practice oriented planning and executing attacks

Course deliverables

- Paper TOC and references
- Attack plans
- 3 vulnerability reports
- Paper (8-10 pages)
- Presentation
- + Assorted peer reviews

Course work is done in pairs

In special cases 1 or 3 persons

- Schedule (see the course web page)
 - Two lectures after this one + presentations
 - Course work begins after next lecture, and ends in presentations (in second half of April)
 - Before presentations, there are several smaller deadlines
 - Because the course is practice oriented, it is not possible to "cram up" during the last week – hence multiple checkpoints

Grading

- Based on all course work deliverables
 - Especially "polished deliverables": paper, presentation, and vulnerability reports
- All deliverables affect grading, but rule of thumb:
 - "Base grade" based on topic difficulty: easy=1, medium=3, difficult=5
 - A modifier (plus or minus) based on how well topic has been executed
 - Example: medium topic, well executed, can be 4 or even 5
- We'll give "base grade" feedback when we get your attack plans

Sending course deliverables

- All deliverables in PDF format
 - PDF must be compatible with Acrobat Reader
 - Paper must be produced using LaTeX (templates on course web page)
 - Template based on NetSec 2004 paper template
 - See e.g. NetSec web page and newsgroups for LaTeX tips
- Submission using e-mail by midnight (24:00)
 - Compress all files into one ZIP file
 - Send the ZIP file as an e-mail attachment
- Late submission = impact on grading
 - If you're going to be late, notify us in advance if possible
 - If you have a valid reason, no impact on grading (e.g. family emergency)
 - Deadline extensions only for unforeseen, valid reasons

Student introductions & pairing up

Student introductions & pairing up

Student introductions

- Help in pairing up and avoiding topic conflicts
- => Let's do that now!

Please describe

- Who are you?
- Why are you interested in the course?
- What types of topics are you interested in?
- Do you already have a pair ?

If you don't have a pair

- Stay behind after the lecture and find a pair
- You should have a pair after the lecture (finding one later can be difficult)
- If you don't find a pair after lecture, please come talk to us

Topic selection

Central criteria for a good topic

- Topic must include actual attack work
 - Purely theoretical work is not enough, unlike in most courses
- Successful attack should cause some compromise
 - If you succeed, some (security relevant) harm should be done
 - You need to define your security assumptions and relate the attack to these
- Successful attack should be possible but not self-evident
 - If successful attack is clearly not possible, the topic is useless
 - If successful attack is automatically guaranteed, the topic is usually useless (more discussion on this on following slides)
 - A failed attack does not cause a negative grade impact, if the effort was good
- Attacks can be implemented within course scope
 - 2 people and 4 ECTS credits of work (including paper work)
- Topic should be challenging for student capabilities
 - Requires a stretch but not beyond course scope
 - Choose a topic which challenges you and makes it interesting

Other considerations

- Own topic is best, if you can find one
 - Try to find a topic that hasn't been extensively covered yet
- Grading may be affected by an easy or "old" topic
 - If old topic (say 802.11 security), try to find a novel perspective
 => more interesting and better grade possible
- Can you actually find three vulnerabilities related to topic?
 - Combination attack may result in more realistic exploits
 - To ensure you know what you're doing, we require attack plans
- Do you have access to the equipment you need?
 - Remember The course does not provide these
 - Permissions from property / asset owners
 - Novel or custom built hardware is fine
- Overlap with other course participants
 - Rule of thumb max. 2 pairs per topic
 - Usually not an issue

Other considerations

Company-sponsored topics

- A company may provide a product for vulnerability testing
- If you know interested parties, let us know

Confidential topics

- Your topic relates to your company or other contact who wants to remain anonymous (for example)
 - Come talk to us after the lecture if your topic might be confidential
- Special arrangements: e.g. deliverables returned in paper format
 - You'll present your paper, no need to reveal e.g. company name(s)
 - The paper or vulnerabilities will not be available to other students

Hardware, software, testing environment, permissions

- You need to get all these yourself!
- You may use the laboratory network
- Vmware, User Mode Linux, Xen, Qemu, KVM, or other virtualization?

Common questions re: topic

- Can an existing vulnerability be a topic?
 - Yes topics do not have be truly novel, but it is preferable to find some new angle to the topic, for instance:
 - You extend the attack in some manner
 - You apply the attack in situations where it hasn't been applied before
 - You combine multiple known attacks together into an interesting combined attack
 - If the attack is difficult to carry out (e.g. biometric spoofing), then even a
 previously known but difficult attack may be OK as is
 - · There is considerable difficulty and related risk of not succeeding
 - Examples: implement a recently discovered theoretical (e.g. cryptographic)
 vulnerability, reverse-engineer a non-public exploit, repeat a known challenging attack (side channel attacks, optimized brute forcing, etc)
- Can existing tools be used?
 - Existing tools should be used whenever possible
 - However, they reduce the amount of practical work done
 - => Ensure that even with the use of existing tools, there is enough practical work (programming etc) to fulfill course target effort (2 x 4 ECTS credits)
- If unsure, please ask through course e-mail

Topic reservation

- You should come up with topics this week
 - Email course staff if you're unsure about a topic or just can't find one
- Reservation during next lecture
 - List of reserved topics
 - Conflicts will need to be worked out
 - Backup topics you should have a backup topic in case your primary topic is too popular or otherwise not acceptable
- Conflict resolution
 - We'll work it out peacefully next lecture
 - If all else fails, random choice

Rough topic areas

- Protocols
- Protocol implementations
- Hardware
- Operating systems and core services
- Application software
- Products (e.g. networking)
- Web technology
- Misc

Protocols

- Cryptographic protocols SSH, IPsec (IKEv1/v2), TLS
- Authentication protocols
- Peer-to-peer protocols
- Databases LDAP, Active Directory, SQL
- Grand old Internet protocols DNS, HTTP, FTP, etc.
- Mobility protocols HIP, Mobile IPv4, Mobile IPv6
- Routing protocols RIP, OSPF, BGP
- Link level protocols Bluetooth, 802.11

Protocol implementations

- Look at the implementation of basically any important or interesting protocol
- Both server and client software is OK
- You may compare multiple implementations of the same protocol (e.g. IPsec in Windows XP and other implementations)
- You're almost certain to find security issues :-)

Hardware

- Printers, digital cameras, scanners, etc
- Tamper-proof (or rather, resistant) devices smart cards, USB tokens ...
- Electromagnetic leaks, timing attacks
- Dismantling smart cards or other hardware devices
- Hardware man-in-the-middle attacks

Operating systems & core services

- Microsoft platforms XP/2003, Windows Mobile
- UNIX platforms Linux, *BSD, Solaris, ...
- Mobile platforms Symbian, Windows Mobile
- Virtualization technologies Vmware, Xen, User Mode Linux, Qemu, etc
- System services Authentication models, disk encryption, etc

Applications

- P2P clients and servers
- Audio and video players, codec libraries
 - Try to produce media files that exploit vulnerabilities in player software
 - Digital TV decoders
- Mail clients, web browsers
- Software vulnerabilities in widely used or critical applications

Web

- HTTP, CGI backends (mod_perl, mod_php, etc)
- Java, JavaScript, ActiveX
- Web browsers and servers
- Flash

Miscellaneous

- Connection hijacking
 - ARP spoofing + TCP spoofing, man-in-the-middle attacks
- Cracking cryptographic primitives or constructs
 - Distributed brute forcing, etc.
- Admin security tools libsafe, samhain, etc.
- Attack tools, toolkits, rootkits, etc.
- Social engineering
- Biometric authentication spoofing

- DES 40-bit Key Recovery Software Implementation and Results
- Security flaws in SSH-1.2.17
- Denial of Service Attacks
- Network Attacks on IPsec
- Rootkits revealed
- Quality of Third Party Networks Services at Company X
- Hijacking a TCP/IP connection using an ARP attack
- WLAN Vulnerabilities
- Social Engineering Continued
- Attacks of GPRS
- Security of USB tokens
- Attacking predictable IPsec ESP initialization vectors
- IPv6 enabled Mobile Router Security

- The Internal Network of an Office Building
- Fooling Fingerprint Scanners
- Attacks on Kerberos V in a Windows 2000 Environment
- Penetrating embedded personal firewalls with trojans
- Game Server Vulnerability Exploits in DoS attacks
- Xerox 7132
- UPnP Protocol
- Message Stream Encryption (MSE)
- AES side channel attacks
- BSD rootkit
- Cross site scripting
- Security analysis of cadred.org
- Xen hypervisor

- Attacking Kerberos 5 Vulnerabilities
- Attacks against the Clavister firewall
- Attacking the Microsoft Fingerprint Authentication System
- PhpBB
- OpenVPN
- RFID
- Faking WLAN hotspots
- Eavesdropping and taking control of Symbian phones
- DHCP
- Cache timing attacks on AES (Bernstein attack)
- IPV6 stateless autoconfiguration
- Testing Axapta application security
- Bluetooth

- P2P client security
- BitTorrent networks
- Windows file sharing & SMB protocol
- Wireless keyboard sniffing
- Flow control vulnerabilities in web based applications
- Attacking electronic documents and digital signatures
- Linux firewall security
- DoS against CRL distribution point by compromising NTP service
- Vulnerabilities of game network implementations
- ICQ vulnerabilities
- Feeding malformed media files to popular media players
- VoIP vulnerabilities

Other issues

Legal issues

- The course deals with practical exploits
 - For instance, people have explored how Trojan horses work
- You are responsible for the legality of what you do on the course
 - HUT or the course (staff) is not responsible for what you do
 - In particular, you're responsible for ensuring no harm is done to other people's equipment, network, etc.
 - Get permissions for whatever networks or equipment you will be hacking
- Finnish law applies (of course)
 - We (or HUT) cannot make judgments on what is legal and what isn't, we don't have the necessary training
 - Digital Rights Management (DRM) has been a problematic topic since beginning of 2006 :-((organized discussion is now probably illegal)

Paper publication

- Best papers may be submitted as conference papers
 - Papers typically need a substantial amount of editing and re-scoping before they are ready for submission
 - 3 papers accepted to Australian Information Warfare and Security Conference (AIWSC '03) from the course in year 2003
- The process depends on the paper, case-by-case basis
 - We'll ask the authors of best papers whether they are interested in submission
- Keep this in mind as an alternative
 - Valuable experience, if you haven't published before
- Of course, you're free to proceed on your own, independent of the course
 - This is not directly related to course work or grading

Summary

- Your effort => 4 (ECTS) credits
 - Vulnerability reports, paper & presentation + supporting submissions
- Next steps before next lecture
 - Make sure you have a pair to work with (if not, stay after lecture)
 - Topic selection begins after this lecture
 - Look up topics, brainstorm for your own topics
 - Select primary and backup topic
 - Discuss topics in the newsgroup if you think there may be overlap
 - Next lecture: topic reservation, writing process, other issues
 - After that, mostly deadlines (maybe one interim lecture) before presentations
- Questions?
- See you Thursday 29.1.2009 T4 16-18