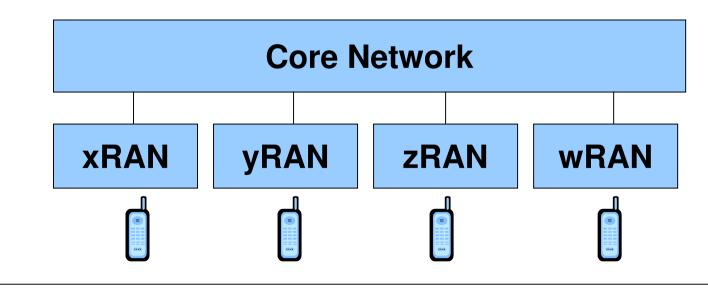
WCDMA Radio Access Network

Jussi Katajala


Jussi Katajala 2.2.2005 T-110.456 Next generation cellular networks

Contents

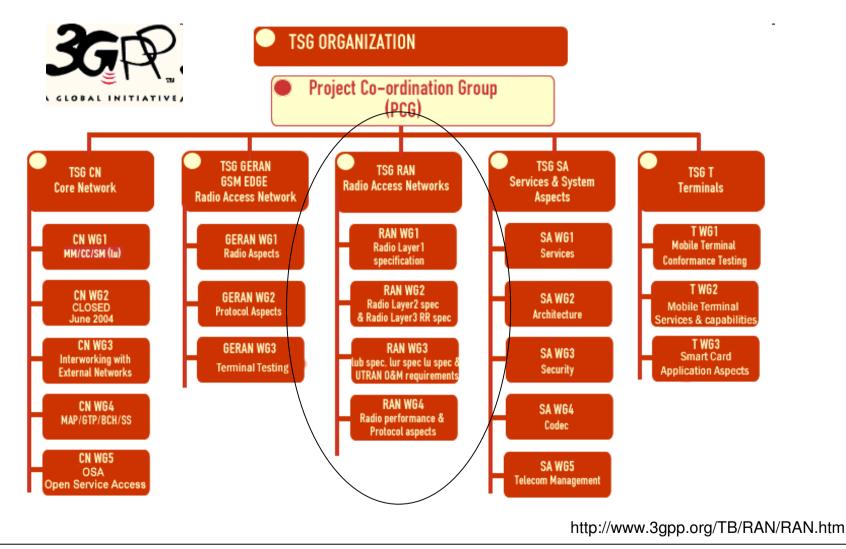
- WCDMA RAN
- What does UMTS mean to us?
- Further information

Radio Access Network

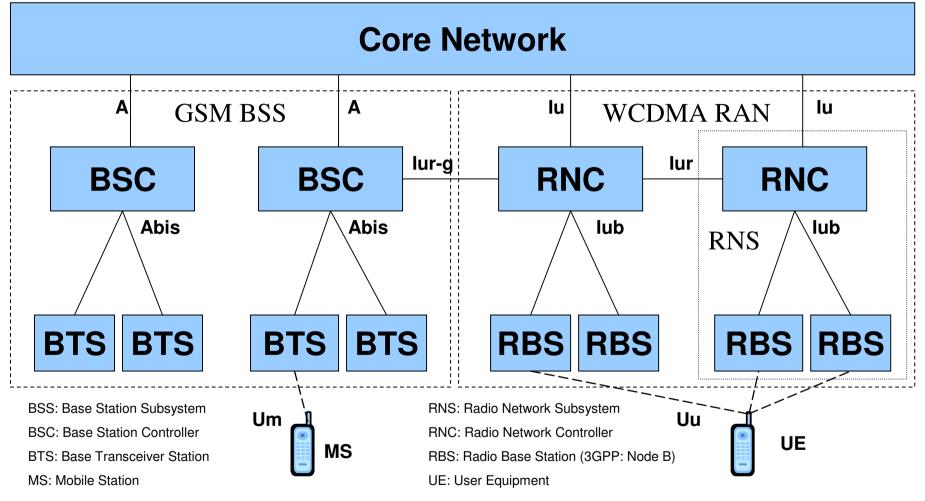
- The main purposes of separate RAN
 - Provide a connection between the handset and CN
 - Isolate all radio issues from CN
- The advantage is one CN supporting multiple access
 technologies

Jussi Katajala 2.2.2005

IMT-2000


- RECOMMENDATION ITU-R M.1457-3: Detailed specifications of the radio interfaces of International Mobile Telecommunications-2000 (IMT-2000) specifies following terrestrial radio interfaces for 3G:
 - IMT-2000 CDMA Direct Spread: WCDMA (UTRAN FDD)
 - IMT-2000 CDMA Multi-carrier: CDMA2000
 - IMT-2000 CDMA TDD: TD-SCDMA (UTRAN TDD)
 - IMT-2000 TDMA Single Carrier: UWC-136 (EDGE)
 - IMT-2000 FDMA/TDMA: DECT

Jussi Katajala 2.2.2005


- All of these standards are incompatible
- 3GPP term for WCDMA RAN is Universal Terrestrial Radio Access Network (UTRAN)
- UMTS uses WCDMA as its RAN technology. As a result, the terms UMTS and WCDMA are often used interchangeably.

EDGE: Enhanced Data for GSM Evolution	WCDMA: Wideband Code Division Multiple Access
CDMA 2000: Code Division Multiple Access as specified in IS-2000	FDD: Frequency Division Duplex
TD-SCDMA: Time Division Synchronous CDMA	TDD: Time Division Duplex
UMTS: Universal Mobile Telecommunications System	DECT: Digital Enhanced Cordless Telecommunications

WCDMA RAN specifications

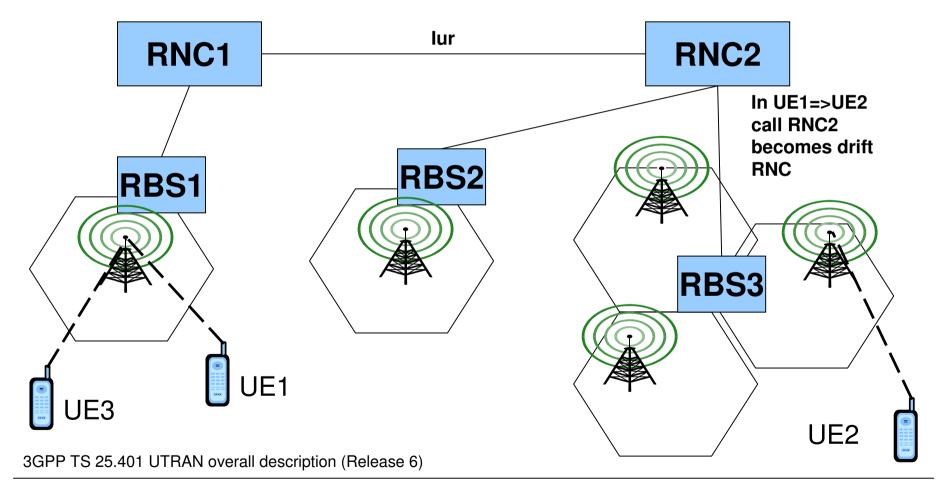
WCDMA RAN nodes



3GPP TS 25.401 UTRAN overall description (Release 6)

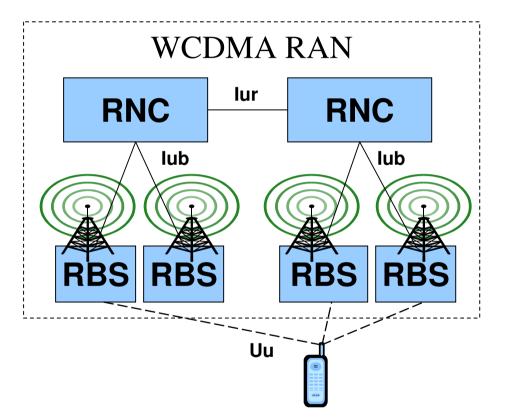
Jussi Katajala 2.2.2005

Radio Network Controller (RNC)

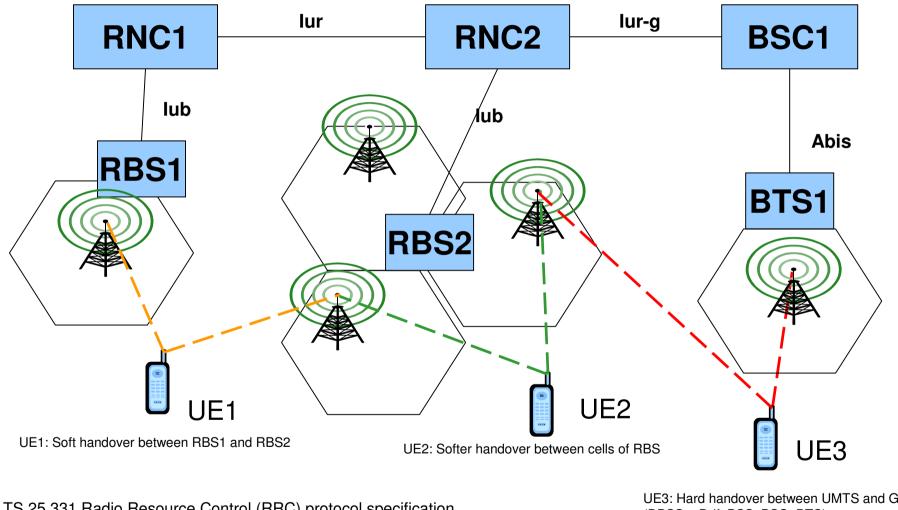

- Controls all WCDMA
 RAN functions.
- Connects the WCDMA RAN to the core network via the lu interface.
- Roles of RNC
 - Serving RNC
 - Controlling RNC
 - Drift RNC

3GPP TS 25.401 UTRAN overall description (Release 6)

Roles of RNC


Serving RNC for UE1, UE3 Controlling RNC for RBS1 cells Serving RNC for UE2 Controlling RNC for RBS2, RBS3 cells

Jussi Katajala 2.2.2005


Radio Base Station (Node B)

- Handles the radio transmission and reception to/from the handset over the radio interface (Uu).
- Controlled from the Radio Network Controller via the lub interface.
- One Radio Base Station can handle one or more cells.
- Connected to only one RNC

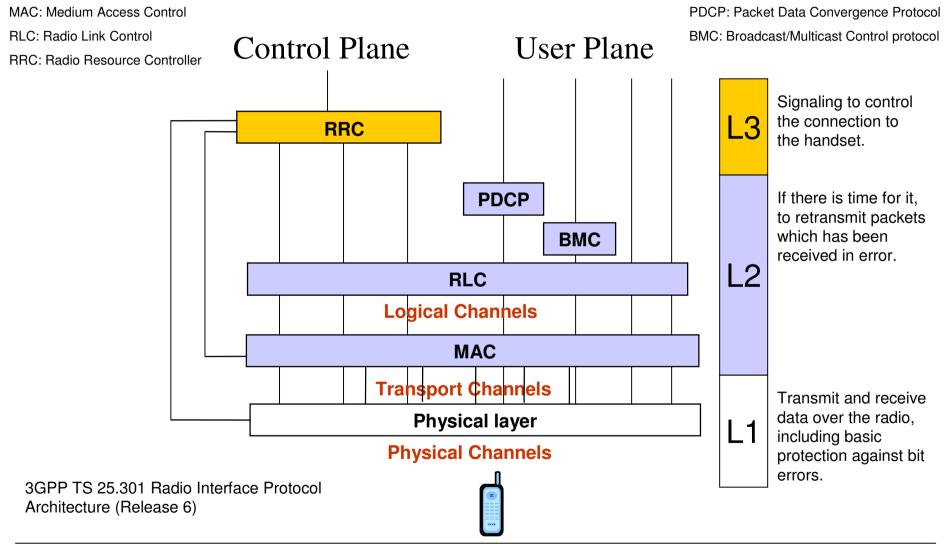
3GPP TS 25.401 UTRAN overall description (Release 6)

Mobility - Handovers

TS 25.331 Radio Resource Control (RRC) protocol specification

UE3: Hard handover between UMTS and GSM (DBSS = Drift BSS, BSC+BTS)

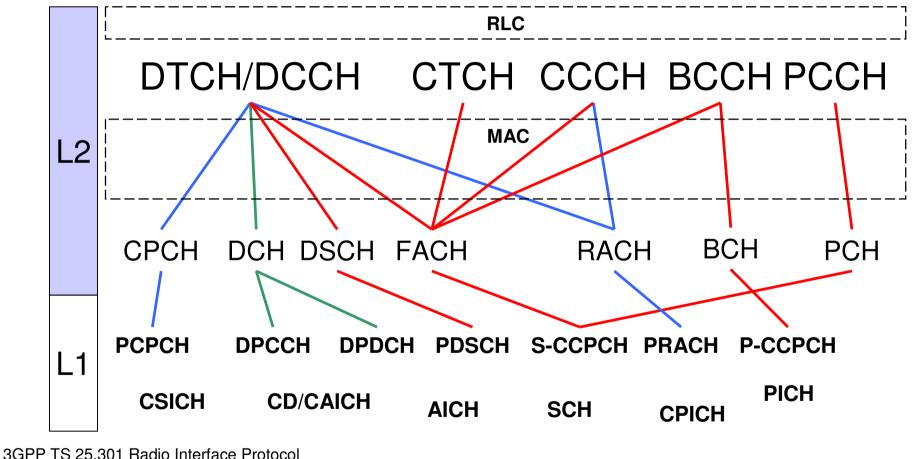
Jussi Katajala 2.2.2005


Radio resources

- Power control
 - Cell breathing: traffic load change causes cells to grow and shrink
 - Regulates the transmit power of the terminal and base station
 - Less interference and more users on the same carrier
- Congestion control
 - Reduce the bit rate of non real-time applications
 - Triggers the inter- or intra-frequency handover to moves some subscribers to less loaded frequencies.
 - Handover of some subscribers to GSM
 - Discontinue connections and protect the remaining connections
- Admission control
 - Decide if new connections are allowed based on network load

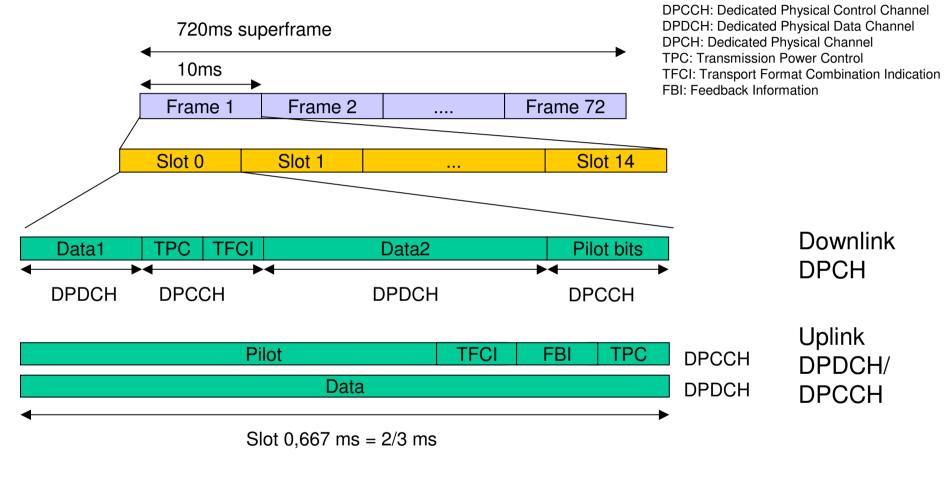
RNC RBS High load Low load

3GPP TS 25.101, 25.133, 25.214, 25.215, 25.331, 25.433, 25.435, 25.841, 25.849


UTRA FDD protocol architecture

Jussi Katajala 2.2.2005

Mapping of channels


Uplink Downlink Uplink/Downlink

Architecture (Release 6)

Jussi Katajala 2.2.2005

Time slot configuration example

3GPP TS 25.211 Physical channels and mapping of transport channels onto physical channels (FDD) (Release 6)

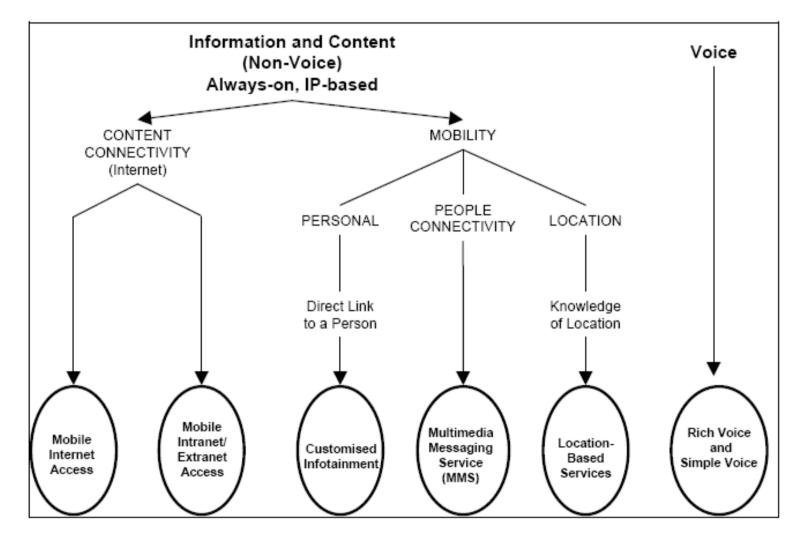
Who needs UMTS?

- The Harris Interactive survey conducted an online survey on over 10,000 adults in Europe (UK, France, Germany, Spain, Italy and Belgium) regarding 3G in early 2004.
- Some findings from the survey:
 - 49% of the mobile phone users in Europe are not interested in 3G services
 - 44% would not use their phones more than to make regular calls
 - 55% believes 3G will be expensive to use
 - 52% claims not knowing what 3G is and why is it worth having

What does UMTS mean to us?

- You need a UMTS phone
 - GSM phones do not work in UMTS
 - CDMA2000 phones are backward compatible and work in cdmaOne networks.
 - Intelligent terminals
- Efficient power control in UMTS
 - Increased capacity, increased battery lifetime
- High data rate transmission
- WCDMA-GSM handover
 - UMTS/GSM dualband phone for more coverage
- New services
 - Live video conversation, Wireless Internet or VPN, Mobile Media
- New applications
 - Nobody knows what the 3G Killer Application(s) will be
- All basic services like voice and messaging will flow between all systems

Cellular data rates


Cellular Family	Standard	Peak Data Rate (kbits/s)	Typical real life data rate (kbits/s)	Connection type	Modulation
	GSM-CSD (normal)	9.6 / 14.4	9.6	Circuit	GMSK
GSM HSCSD GPRS EDGE		28.8 / 43.2	28.8	Circuit	GMSK
	GPRS	115 / 171	50	Packet	GMSK
	384 / 513	115	Packet	8-PSK	
UMTS FDD TDD	FDD	384 / 2000	144	Packet	QPSK
	384 / 2000	144	Packet	QPSK	
CDMAone IS-95A IS-95B	IS-95A	14.4	14.4	Circuit	QPSK
	IS-95B	64 / 115	56	Packet	QPSK
CDMA 2000 1X-EV 1X-EV 1X-EVDO	1X	144 / 307	130	Packet	QPSK
	1X-EV	2000	tba	Packet	QPSK
	2400	tba	Packet	QPSK	
TDMA	CSD	9.6	9.6	Circuit	DQpi/4PSK

http://www.cellular-news.com/

GMSK: Gaussian Minimum Shift Keying 8-Phase: Phase Shift Keying modulation scheme QPSK: Quadrative Phase-Shift Keying 4PSK: Four-Level Phase Shift Keying

Jussi Katajala 2.2.2005

3G Service Examples

Jussi Katajala 2.2.2005 T-110.456 Next generation cellular networks

The market push

- Application providers and operators are unlikely to implement new features to GSM, money is going to UMTS services.
- Operators must gain revenue from UMTS investments
- As of January 2005 there were 123 UMTS licenses granted totally in Europe, Middle East, Africa and Asia Pacific and 61 UMTS networks were launched commercially.
- At the same time there were 107 commercially launched CDMA2000 networks.
- The launch of first TD-SCDMA network is planned for mid-2005.

Would you like to know more?

- 3GPP TS 25.xxx series of specifications
 - TS 25.401 UTRAN overall description
 - TS 25.200 series describes the Layer-1 specification
 - TS 25.201: Physical layer General description
 - TS 25.211: Physical channels and mapping of transport channels onto physical channels (FDD)
 - TS 25.223: Spreading and modulation (TDD)
 - ...
 - Layers 2 and 3 of the radio interface are described in the TS 25.300 series
 - TS 25.301 Radio interface protocol architecture
 - ...
- ITU Activities on IMT-2000
 - <u>http://www.itu.int/home/imt.html</u>
 - RECOMMENDATION ITU-R M.1457-3: Detailed specifications of the radio interfaces of International Mobile Telecommunications-2000 (IMT-2000)

Would you like to know more?

- T-110.498 Special Course in data communications and networks, slides of spring 2003
 - http://www.tml.hut.fi/Opinnot/T-110.498/2003/
- Websites
 - Vodafone Live, <u>http://www.vodafone-i.co.uk/live/</u>
 - Hutchison 3G, <u>http://www.hutchison3g.com/</u>
 - UMTS Forum, <u>http://www.umts-forum.org/</u>
 - 3GPP, <u>http://www.3gpp.org/</u>
 - CDMA development group, http://www.cdg.org/
- Harri Holma and Antti Toskala: WCDMA for UMTS : Radio Access for Third Generation Mobile Communications (3rd edition published in September 2004)

Would you like to know more?

- WCDMA network
 vendors
 - Alcatel
 - Ericsson
 - Lucent
 - Motorola
 - Nokia
 - Nortel
 - Siemens/NEC

- CDMA2000 network
 vendors
 - Ericsson
 - LG Electronics
 - Lucent
 - Motorola
 - Nortel
 - Samsung

Check their websites for 3G information

Thank you!