Domain Name System Security

T-110.4100 Tietokoneverkot March 2012 Bengt Sahlin <Bengt.Sahlin@ericsson.com>

Objectives

- Provide DNS basics, essential for understanding DNS security
- Understand threats against DNS
- Provide examples of vulnerabilities and attacks
- Understand mechanisms in DNSSEC
- Understand effects of using DNSSEC
- Understand what can be done to improve security of DNS
- cover current status with DNSSEC deployment

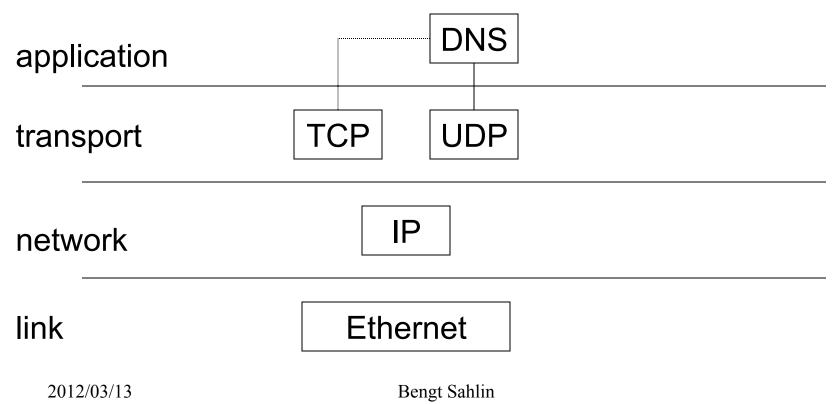
Humans and Addresses

Numeric addresses are used in the Internet
 – example: 10.0.0.1 (IPv4)

- fe80::a0a1:46ff:fe06:61ee (IPv6)

- Humans are better at remembering names than numbers
- In the Internet, names have been used from the start on

History

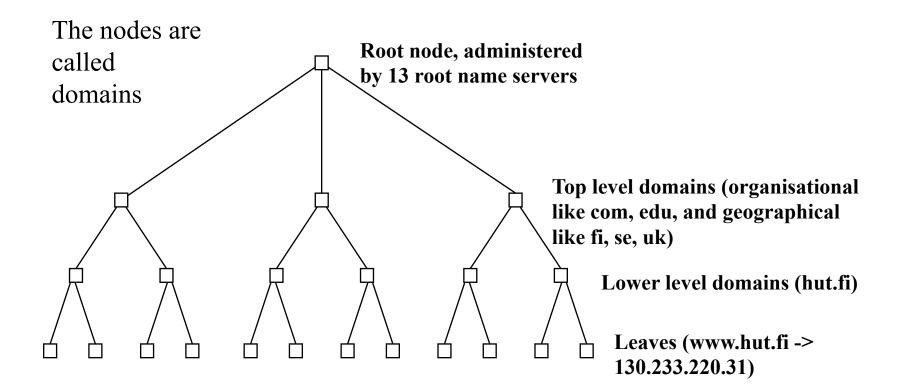

- In the beginning ... there was the file hosts
 mapping between "hostname" and address
- Internet grew, one file was not a scalable solution
- A more scalable and automated procedure was needed

The Solution...

- DNS (Domain Name System)
- Main tasks
 - mapping between names and IP addresses, and vice versa
 - controlling e-mail delivery
- But today DNS is used to store a lot of other data also
 - for example DNS SRV record
 - specifying the location of services

Basic Internet Infrastructure

• DNS is a fundamental component of the Internet infrastructure


Basic Characteristics (1/2)

- DNS is a database
- The three basic characteristics of the database:
 - 1) global
 - All the names need to be unique
 - 2) distributed
 - no node has complete information
 - an organisation can administer its own DNS information

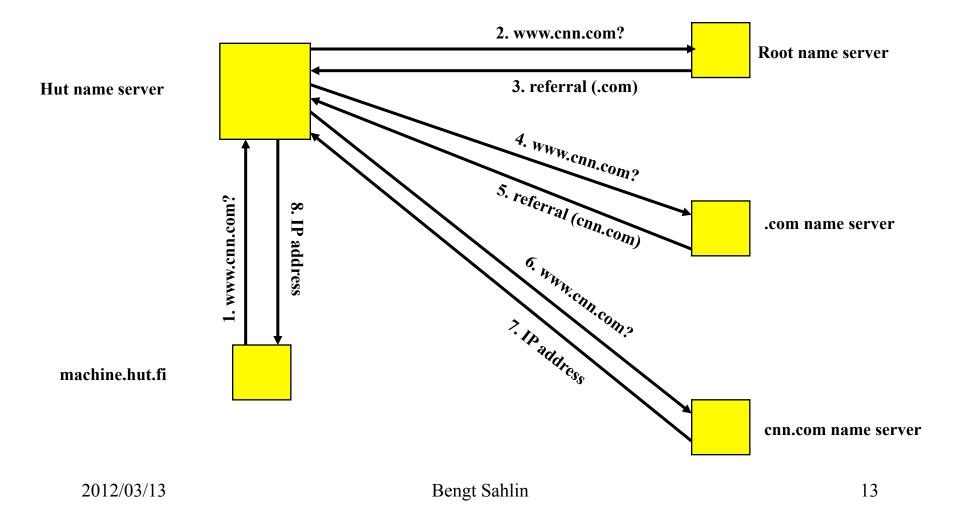
Basic Characteristics (2/2)

- 3) Hierarchical
 - the data is arranged in a tree structure with a single root node
 - the structure is similar to the Unix file system structure

DNS Structure

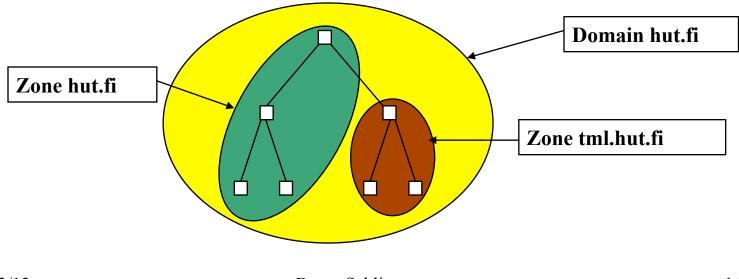
DNS Concepts (1/3)

- The servers are called name servers
 - name server "roles"
 - master (primary)
 - the name server where the data is administered
 - is the ultimate authority for the data (authoritative)
 - slave (secondary)
 - is authoritative for a zone
 - gets the data from the master through a zone transfer
 - cache
 - a name server can store data DNS data (that it is not authoritative for) for a while


DNS Concepts (2/3)

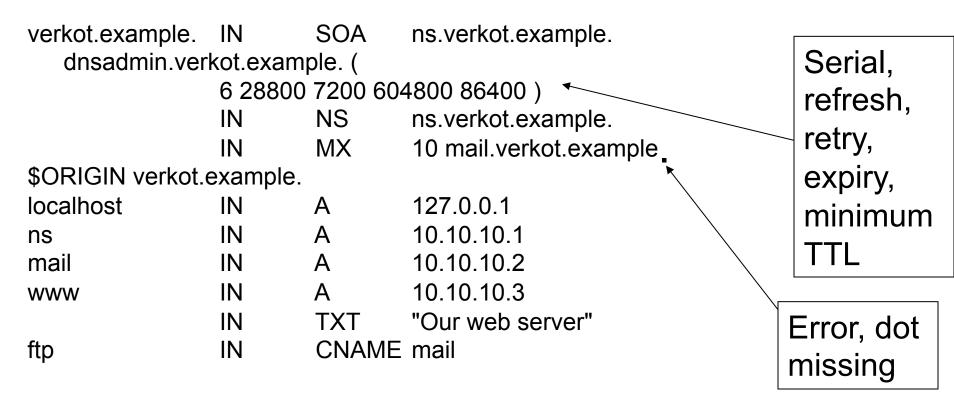
- The client is called a resolver
 - can do name queries
 - Typically implemented with library functions that applications use
 - nslookup (looking at DNS data), dig (for serious debugging)
- Name resolution
 - the process of acquiring some data, possible by performing several name queries
- The name servers need to know ("are booted up with") the names and addresses of the root name servers (file root.cache)

DNS Concepts (3/3)


- Delegation
 - the authority for some sub-domain is given to another name server

Name resolution example

Zone vs. Domain


• Zone: a contiguous part of the DNS tree for which a name server has complete information

Resource Records

- The data in the DNS database is stored in entities called resource records
- The most common resource records:
 - A (name to address mapping)
 - PTR (address to name mapping
 - MX (Mail Exchanger record)
 - NS: name server record
 - CNAME: name alias
 - SOA: Start of authority

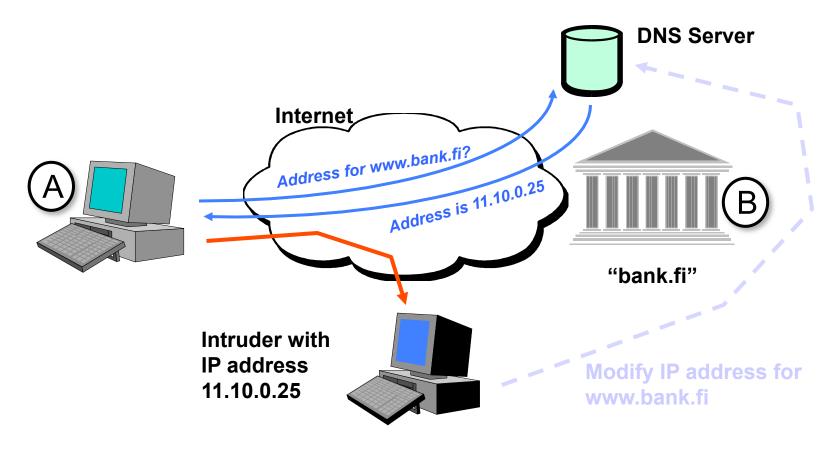
Master Zone File Example

DNS Today

- DNS has served its purpose well
- Internet is evolving, and new requirements have been issued
 - Support for IPv6
 - DNS security extensions
 - Vulnerabilities in DNS used in many attacks (like DNS spoofing)
 - security needed
 - DNS dynamic update
 - International DNS
 - Other new requirements

DNS Threats (1/2)

- Threats to the protocol
 - Packet Interception
 - Eavesdropping, man-in-the-middle attacks, DNS spoofing
 - ID guessing and Query Prediction
 - Predict resolver behavior and send a bogus response
 - Could be a blind attack
 - Name-based attacks
 - For example cache poisoning (using packet interception attacks)


DNS Threats (2/2)

- DOS attacks
- Issues with authenticating non-existence of a DNS name
- Wildcard handling issues
- DNSSEC weaknesses
- DNS Software vulnerabilities

DNS Vulnerabilities

- Crackers often start planning attacks by collecting DNS information
 - many organizations try to make this harder by prohibiting zone transfers and by using split DNS
- Crackers try to use DNS vulnerabilities
 - Both for direct attacks against DNS or for mounting further attacks

Manipulating DNS

DNS Spoofing

- Three ways to manipulate DNS
 - answer to queries with a false reply before the actual name server answers
 - cache poisoning: send false data to a recursive name server with a long TTL
 - the data is cached for a long time
 - compromise the DNS server
 - Using DNS software vulnerabilities

DOS Attacks using Name Servers

- Send a large number of DNS queries (using UDP) to a name server or several name servers (DDOS), using a spoofed IP address
 - responses will be sent to the spoofed IP address
 - the spoofed IP address is the victim
 - hard to trace because of the spoofed IP address
- the responses can be significantly larger than the queries
- DOS possibly both on victim machine and name server

BIND Vulnerabilities (1/3)

- Use the BIND vulnerabilities to compromise the DNS server machine
- often BIND is run as superuser!!!!
- Examples of vulnerabilities
 - ISC BIND 9 Remote packet Denial of Service against Authoritative and Recursive Servers (July 2011)
 - Fix: upgrade
 - ISC BIND 9 Remote Crash with Certain RPZ Configurations (July 2011)
 - Fix: upgrade
 - Large RRSIG RRsets and Negative Caching can crash named (May 2011)
 - Fix: upgrade
 - RRSIG Queries Can Trigger Server Crash When Using Response Policy Zones (May 2011)
 - Fix: Use RPZ only for forcing NXDOMAIN responses and not for RRset replacement.
 - BIND: Server Lockup Upon IXFR or DDNS Update Combined with High Query Rate (February 2011)
 - Fix: If you run BIND 9.7.1 or 9.7.2, upgrade to BIND 9.7.3. Earlier versions are not vulnerable. If you run BIND 9.6.x, 9.6-ESV-Rx, or 9.4-ESV-R4, you do not need to upgrade.
 - BIND 9.5 is End of Life and is not supported by ISC. BIND 9.8 is not vulnerable.

BIND vulnerabilities (2/3)

- RRSIG query handling bug in BIND 9.7.1 (July 2010)
 - Fix: upgrade
- BIND 9 DNSSEC validation code could cause bogus NXDOMAIN responses (Jan 2010)
 - could impair the ability of DNSSEC to protect against a denial-of-service attack on a secure zone.
 - Fix: upgrade
- BIND Dynamic Update DoS (July 2009)
 - BIND denial of service (server crash) caused by receipt of a specific remote dynamic update message.
 - Fix: upgrade
- CERT VU#800113 DNS Cache Poisoning Issue (Aug 2008)
 - Fix: DNSSEC, Query Port Randomization for BIND 9 (upgrade)

BIND vulnerabilities (3/3)

- "BIND: Remote Execution of Code" (Nov 2002)
 - Versions affected: BIND 4.9.5 to 4.9.10, 8.1, 8.2 to 8.2.6, 8.3.0 to 8.3.3
 - SIG RR code bug
 - Consequence: possibility to execute arbitrary code
 - Fix: upgrade
- Up-to-date information on BIND vulnerabilities

- https://www.isc.org/advisories/bind

Attack on the DNS InfraStructure

- Distributed DOS attack against the DNS root servers 6 February 2007
 - six of the 13 root servers were affected, two badly
 - the two servers affected badly did not use anycast
 - Anycast
 - spread the load on several servers in different locations
 - Also measures to block the packets part of the DDOS
 - the packets had a larger size than 512 bytes
 - If the root servers do not function, eventually name resolution will not work
 - in this case, fast reaction and a new technology (anycast) lead to limited impact on the actual Internet users

DNS Security (1/3)

- Main documents
 - DNS security extensions
 - New RFCs approved 2005
 - DNS Security Introduction and Requirements, RFC 4033
 - Resource Records for DNS Security Extensions, RFC 4034
 - Protocol Modifications for the DNS Security Extensions, RFC 4035
 - new RFC in 2006
 - Minimally Covering NSEC Records and DNSSEC On-line Signing, RFC 4470
 - Protection of queries and responses
 - Secret Key Transaction Authentication for DNS (TSIG), RFC 2845
 - DNS Request and Transaction Signatures (SIG(0)s), RFC 2931
 - Secure Dynamic Update
 - Secure Domain Name System (DNS) Dynamic Update, RFC 3007
 - Storing Certificates in the Domain Name System (CERT RR), RFC 4398
- A list of all documents related to DNSSEC can be found from:
 - http://datatracker.ietf.org/wg/dnsext/

DNS Security (2/3)

- Security services:
 - Data origin authentication and integrity
 - including ability to prove non-existence of DNS data
 - Transaction and request authentication and integrity
 - Means for public key distribution

DNS Security (3/3)

- DNS security does not offer:
 - confidentiality
 - access control
 - but often the DNS server implementations do
 - protection against attacks on the name server node itself
 - protection against denial of service attacks
 - protection against misconfiguration

DNSSEC Security Extensions (1/9)

- Signature record (RRSIG)
 - a record containing a signature for a DNS RR
 - contains the following information
 - type of record signed
 - algorithm number
 - Labels Field
 - Original TTL
 - signature expiration and inception
 - Key tag
 - signer name
 - Signature
 - replaces SIG record

DNSSEC Security Extensions (2/9)

• Example

host.example.com. 86400 IN RRSIG A 5 3 86400 20030322173103 (20030220173103 2642 example.com. oJB1W6WNGv+ldvQ3WDG0MQkg5IEhjRip8WTr PYGv07h108dUKGMeDPKijVCHX3DDKdfb+v6o B9wfuh3DTJXUAfl/M0zmO/zz8bW0Rznl8O3t GNazPwQKkRN20XPXV6nwwfoXmJQbsLNrLfkG J5D6fwFm8nN+6pBzeDQfsS3Ap3o=)

DNSSEC Security Extensions (3/9)

- DNSKEY record
 - Stores public keys that are intended for use in DNSSEC
 - contains the following fields
 - flags (indicating a zone key, public key used for TKEY)
 - the protocol (DNS, value 3)
 - the algorithm (RSA, DSA, private)
 - the public key
 - replaces KEY record

DNSSEC Security Extensions (4/9)

• Example

example.com. 86400 IN DNSKEY 256 3 5 (AQPSKmynfzW4kyBv015MUG2DeIQ3 CbI+BBZH4b/0PY1kxkmvHjcZc8no kfzj31GajIQKY+5CptLr3buXA10h WqTkF7H6RfoRqXQeogmMHfpftf6z Mv1LyBUgia7za6ZEzOJBOztyvhjL 742iU/TpPSEDhm2SNKLijfUppn1U aNvv4w==)

DNSSEC Security Extensions (5/9)

- Delegation Signer record (DS)
 - Indicates which key(s) the child zone uses to sign its records.
 - Contains the following fields
 - Key tag
 - Algorithm
 - Digest type
 - Digest

DNSSEC Security Extensions (6/9)

• Example

dskey.example.com. 86400 IN DNSKEY 256 3 5 (AQOeiiR0GOMYkDshWoSKz9Xz fwJr1AYtsmx3TGkJaNXVbfi/ 2pHm822aJ5iI9BMzNXxeYCmZDRD99WYwYqUSdjMmmAphXdvxegXd/ M5+X7OrzKBaMbCVdFLUUh6DhweJBjEVv5f2wwjM9Xzc nOf +EPbtG9DMBmADjFDc2w/rljwvFw==) ; key id = 60485

dskey.example.com. 86400 IN DS 60485 5 1 (2BB183AF5F22588179A53B0A 98631FAD1A292118)

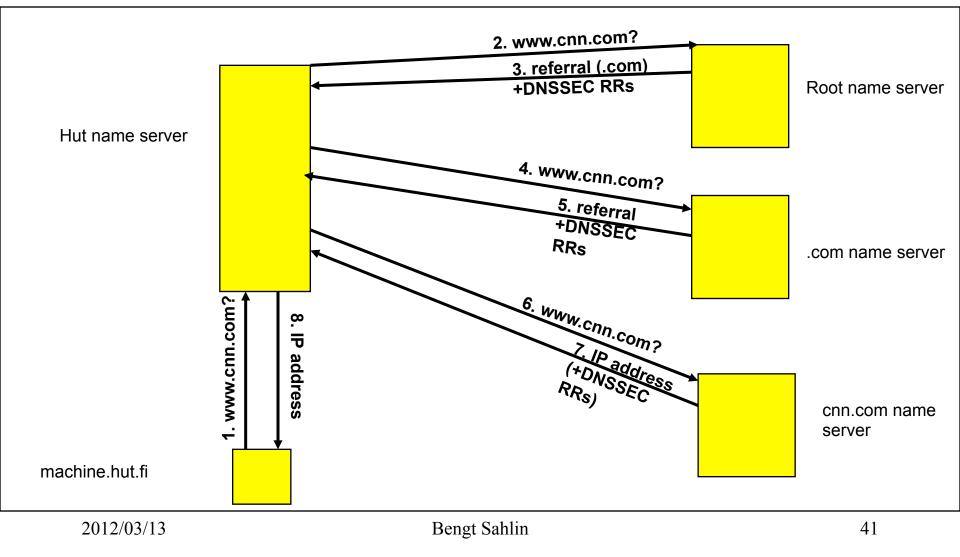
DNSSEC Security Extensions (7/9)

- NSEC record
 - data origin authentication of a non-existent name or record type
 - implies a canonical ordering of records
 - NSEC records are created automatically when doing the signing process
 - replaces NXT records

DNSSEC Security Extensions (8/9)

• Example:

ns 86400 IN A 10.10.10.1 ns 86400 IN NSEC www.example.com. (A NSEC) www 86400 IN A 10.10.10.3


DNSSEC Security Extensions (9/9)

- CERT record
 - can contain different kinds of certificates (SPKI, PKIX X.509, PGP)
 - recommended to be stored under a domain named related to the subject of the certificate

Secure Name Resolution

- The resolver is statically configured with some keys (*key signing key*) it trusts
- the process involves verifying a chain of keys and signatures
 - a record retrieved will include a signature
 - the resolver needs to retrieve the corresponding *zone* signing key to be able to verify the signature
 - Verifications starts from the highest level RR and continues through a chain of verifications, until the zone signing key for the DNS data is verified
 - After that, the DNS data can be verified

Secure Name Resolution (Scenario)

Original Master Zone File

verkot.example. dnsadmin.verkot.exar	IN nple. (SOA	ns.verkot.example.				
		6 28800 7200 604800 86400)					
		IN	NS	ns.verkot.example.			
		IN	MX	10 mail.verkot.example.			
\$ORIGIN verkot.example.							
localhost	IN	А	127.0.0.1				
ns		IN	А	10.10.10.1			
mail		IN	А	10.10.10.2			
WWW		IN	А	10.10.10.3			
		IN	TXT	"Our web server"			
ftp		IN	CNAME	mail			
verkot.example. IN DNSKEY 256 3 5 AQOoIPWnXoZXUI26cJmIWDNps							
+hes9uKt71+QzFiTc3FB3xIUPd+nyjB hArle1HqcKW4+hE8DtDl//zeVa90LEid2PvdP8Zy+							
+tFZ7Zyhg1lKglc TD8qA7DaqHa9Rwhtl9U=							

Zone File after Signing (1/4)

; File written on Wed Sep 28 16:17:16 2005

; dnssec_signzone version 9.3.1

verkot.example. 86400 IN SOA ns.verkot.example. dnsadmin.verkot.example. (6 ; serial 28800 ; refresh (8 hours) 7200 ; retry (2 hours) 604800 ; expire (1 week) 86400 ; minimum (1 day))

86400 RRSIG SOA 5 2 86400 20051028121716 (

20050928121716 23576 verkot.example.

VZ92OWwT7rK5Nj9yksqdsWJ3GaNGp8tNAL7Bs2Vb8uB1+XN

+EPHP4uwIDK43JyzIV0Vj0FHt7hmj9bgwsu6A3Mp332D7k+DRFmhfgHMRdXeMxSGrP

+IB89f2BknCyoXQ)

86400 NS ns.verkot.example.

86400 RRSIG NS 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.

hXX6fGWcTI

+q1NFWJznffkCYPg86wQyW7nwHcdKg0YF2FX57w12A1P9zUlxT8SJ5kJyAEAjBvaxbzKy3qq3NiNq24vaa U0gjJFt7z+4ZgvVBjcGPq3owrlVX+ljITCue)

86400 MX 10 mail.verkot.example.

86400 RRSIG MX 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.

RqOyunvHTO1Rbuc/

HNMe35kXNddlHGrtMubjra7CdO5mDrOJlQicdy7YSuyFfeUdZrF0+px8gv0x0daZabP73zMNW2nKIRtuwDh oNIZLK+op3ycurZ38BR2s79JqfHyD)

86400 NSEC ftp.verkot.example. NS SOA MX RRSIG NSEC DNSKEY

86400 RRSIG NSEC 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.

Yi2YRyNpRCUujfWUt0TaG4zyHb1CTVr3BRXDU0JWvG9ECD6AYvpYpMrPUj4pN

+qKa4v4MaXNaSKĆ4XWsv8Hk/OJIf/BrgCK9OIrPMnPokSd/NSJYEGeTJoI38TZOQYBf) 86400 DNSKEY 256 3 5 (AQOoIPWnXoZXUI26cJmIWDNps+hes9uKt71+QzFiTc3FB3xIUPd +avjBhArle1HqcKW4+hE8DtDI//zeVa90LEid2PvdP8Zy++tFZ7Zyhg1IKgIcTD8qA7DaqHa9RwhtI9U=) ; key Bengt Sallini

Zone File after Signing (2/4)

86400 RRSIG DNSKEY 5 2 86400 20051028121716 (20050928121716 23576 verkot.example. EYhRu2WPmgjo8O1JelgTGgVJvLpExihk8ZDMENyBp5PI+/ioyFFnDeBbi7JtflMGtzHL5oi7yhTVebH5SXZxsxu/ Xg6wVD9G6nQlx/19XNgP5RqMOjA9+z5l8mlye386)

ftp.verkot.example. 86400 IN CNAME mail.verkot.example.

86400 RRSIG CNAME 5 3 86400 20051028121716 (20050928121716 23576 verkot.example. JIVILtgKIs8Km78rAIInGb7uwLF6SQxI7WjXHem6LJ/R2nemrPfpYmI0YNXdeVGOTv3n

+mRZK4Z/yTySflxckTqk666X8WYIsRMhwsvdljWHjlj2u4eArbYcdCLeO33s)

86400 NSEC localhost.verkot.example. CNAME RRSIG NSEC

86400 RRSIG NSEC 5 3 86400 20051028121716 (20050928121716 23576 verkot.example.

J3DgodgZgvbnnvZBWzgdJ2qrWjHg19d88Mwj6LiRP+Z8n7xFa9km8Dh/YT

+MUWv10nd5b9qOzVYMqmPzxJ7EVd0LgTp09V3lgz7Ki7pZcflzNhnLHc+03racm5ImHf12)

localhost.verkot.example. 86400 IN A 127.0.0.1 86400 RRSIG A 5 3 8640

RRSIG A 5 3 86400 20051028121716 (20050928121716 23576 verkot.example.

Uq0P6qTaT2sxSbXqZwqyKNEBUXNS49zUPAJxdcdwukcO3FyQYb6ld269Q7XAhVPVgxXCYOupcU47vWrPhb9C+/ ymRhEYFKi/zXt+pNVQyedVKtLtTSqoLzcjsC7kbVXw)

86400 NSEC mail.verkot.example. A RRSIG NSEC 86400 RRSIG NSEC 5 3 86400 20051028121716 (20050928121716 23576 verkot.example. M1YNaBEO0IbE3k97kOBhItlp4dnVCZUrTQSZFr/hrAiZ1h5z4CIX3NLAZdr3d55bNqGa75xPm

+1Dg4igfQ/TZRK+p/IOplgCZzggVIWbcTQkndifyHa8tF3mskekSii/)

Zone File after Signing (3/4)

mail.verkot.example.	86400	IN A	10.10.10.2			
	86400	RRSIG	A 5 3 86400 20051028121716 (20050928121716 23576			
verkot.example.			Υ.			
Nhk09ElqZAT/KOkfLtkf9S4IwI8dlxZHsDQFPuqRUP/						
riA8HAI1CzcBVZrZ19S8MNiJ6o22yFQp/0rzMfBnJD/0f0hLo2kaz7Zcsapk+mXd7vsf9Fpi2HrRrdMFWP6nt)						
	86400	NSEC	ns.verkot.example. A RRSIG NSEC			
	86400	RRSIG	NSEC 5 3 86400 20051028121716 (20050928121716			
22576 vorket example	00400	NN010	NOLC 3 3 80400 2003 1020 1217 10 (200309201217 10			
23576 verkot.example.						
SxxQMF2soXT3gHrVV9TNEsA6zPXEifGynZ7eFi4/						
vGm12tkKzA3BTpkImRrLHTrxWuFHpvpUQHxvCxaO8ad3oP6NCHesI1ICENkuUsFW3MMo7uXNZa3t3VxwOIj						
tVsw+)						
ns.verkot.example.	86400	IN A	10.10.10.1			
	86400	RRSIG	A 5 3 86400 20051028121716 (
20050928121716 23576 verkot.example.						
	dQIY/					
CTSUMbPKKxv1DcN1osbAuEpjt5SWmgZgLYx3kpVAk4aSuCGdOWCylRoQdRs/MRx62K6dHhyDy7qtAyMM//						
NHwGUbnkrDoSurXsmDS2ud6JCfNyTCWJI+qK5MUKH)						
	86400	NSEC	www.verkot.example. A RRSIG NSEC			
			•			
	86400	RRSIG	NSEC 5 3 86400 20051028121716 (20050928121716			
23576 verkot.example.						
lk+ovY4k2CFyX3vEo66N0HUHNgLmv7h2a7T08E/4FocQgKXhAv8LU4tG+437IEYxwfKo9/						
j2w5E9cjb+oikTqWqi3jPTD/Zi74wvVa1SHQR4Is6AMwE7DBdM1od3tSrY)						

Zone File after Signing (4/4)

www.verkot.example. 86400 IN A 10.10.10.3 86400 RRSIG A 5 3 86400 20051028121716 (20050928121716

23576 verkot.example.

bsxBpAxE7xw9uzV30kTjif7E6IMHHOsn17EZyDp+01dFR3zNv2Zcu6bvy +crnihJNzgzASeXYvnUq4JaJk0U0qGTDJSIEiDfti/XzflYH3sqDFjw1Yw+ykp4x+gwXOk6)

86400	TXT	"Our web server"	
86400	RRSIG	TXT 5 3 86400 20051028121716 (20050928121716 23576 verkot.example.

Spxg5Jly7vMK8co6hgFng1rlSRZENhxkD27jGPxOtH7wjd7wuuktvl2sNgkBo2dtNuAPVdh256jRe9Eo8xd3cP2 MG//NzLjhL05coelgKEpThHQ6orT2WE0FbN/FNxLW)

86400 NSEC verkot.example. A TXT RRSIG NSEC

86400 RRSIG NSEC 5 3 86400 20051028121716 (20050928121716 23576 verkot.example.

mgO9FIagQqRCmsGbKnBizkxHxUizPv79gcIAI1eaoSAAFwciTWQpJ4hqrcE9MgS67K0qK/ aouoLiNct966GlvKuk41HEIXaDDoCBQ2YJ+zA9 n9CGqRiO4NRY++eKN5AA)

Implications of the Security Extensions (1/2)

- the record number in the database grows roughly by a factor of three (NSEC, RRSIG records needed)
 - New records have a large size, so the actual database grows even more.
- NSEC records make it possible to list the complete contents of the zone (effectively do a zone transfer)
 - Some ideas
 - Minimally Covering NSEC Records and DNSSEC On-line Signing, RFC 4470
 - DNSSEC Hashed Authenticated Denial of Existence, RFC 5155

Implications of the Security Extensions (2/2)

- DNS UDP packets are limited to the size of 512 (RFC 1035)
 - answer packets including required signature records might exceed the limit
 - IPv6 support also increases DNS message sizes
 - Extension mechanism for DNS (EDNS, RFC2671) provides a solution
 - EDNS must be supported in DNSSEC

Transaction and Request Authentication and Integrity

- Secret Key Transaction Authentication for DNS (TSIG)
 - symmetric encryption
 - covers a complete DNS message with a Message Authentication Code (MAC)
 - signature calculation and verification relatively simple and inexpensive
- DNS Request and transaction signatures (SIG (0))
 - public key encryption, sign the message
 - offers scalability

DNS Dynamic Updates (1/2)

- Authorized clients or servers can dynamically update the zone data
 - zones can not be created or deleted
- example

prereq nxrrset www.example.com A prereq nxrrset www.example.com CNAME update add www.example.com 3600 CNAME test.example.com

DNS Dynamic Updates (2/2)

- Example of use
 - mechanism to automate network configuration even further
 - a DHCP server can update the DNS after it has granted a client a lease for an IP address
 - Can be protected with transaction protection methods
 - Secret Key Transaction Authentication for DNS (TSIG), RFC 2845
 - DNS Request and Transaction Signatures (SIG(0)s), RFC 2931

TKEY RR

- TKEY record
 - can be used for establishing a shared secret between the server and the resolver
 - negotiate a shared secret using Diffie-Hellman
 - Authentication using public keys (SIG (0)) or a previously established shared secret
 - The resolver or server generates the key and encrypts it with the server or resolver public key
 - meta-RR, not present in any master zone files or caches

Bengt Sahlin

DNSSEC Issues (1/2)

- DNSSEC is complex
- Significant increase of response packets
- Signature validation increases work load and thus increases response time
- Hierarchical trust model
- Key rollover at the root and TLD name servers
 for example .com contains millions of RRs
- Strict time synchronization needed

DNSSEC Issues (2/2)

• TSIG

- Keys need to be online
- Fine grained authorization not possible
- Many workshops have been held to progress DNSSEC
 - Number of open issues decreasing
- Not much real deployment yet
 - Some secure islands exist
 - TSIG more common

Internationalized DNS (IDN)

- DNS originally designed to work with ASCII as the character set
- Internationalized DNS aims to provide support for other character sets.
 - An encoding from other character sets to ASCII is needed

Security Problems in Internationalized DNS (IDN)

- Phishing concerns known related to IDN
 - Idea: use a different characters set where a name looks the same, but translates to an entirely different domain name
 - Example: http://www.pàypal.com instead of www.paypal.com
- No technical solution has been found to the problems

DNS as a PKI? (1/3)

- Public keys of an entity can be stored under its domain name
 - not intended for personal keys
- DNS can be used to store certificates (CERT record)
 - can include personal keys

DNS as a PKI? (2/3)

- the public key or certificate will be bound to a domain name
 - search for a public key or a certificate must be performed on basis of the domain name
 - a convenient naming convention needs to be used
 - an efficient search algorithm is required

DNS as a PKI? (3/3)

- research on DNS as a certificate repository can be found from the Tessa project at Helsinki University of Technology
 - http://www.tml.tkk.fi/Research/TeSSA/

Conclusions: how to handle DNS Security (1/4)

- Basic security first!
 - Run latest version of the name server
 - Firewall protection
 - Don't run any other services on the machine
 - Run as non-root
 - Run in a sandbox: chroot environment ("jail")
 - Eliminate single points of failure
 - Redundancy, run at least two name servers
 - Put name servers in separate sub-networks and behind separate routers

Conclusions: how to handle DNS Security (2/4)

- Basic security (cont.)
 - Consider non-recursive behavior and restricting queries
 - To mitigate against cache poisoning
 - Use random message Ids
 - Hide version number
 - Prevent unauthorized zone transfer
 - TSIG can be used to authenticate zone transfers
 - Restrict DNS dynamic updates
 - TSIG can be used to authenticate dynamic updates

Conclusions: how to handle DNS Security (3/4)

- Split DNS (internal/external)
 - Useful when using private addresses in the internal network
 - Enhances overall security of the network, as only some nodes can connect to the external network directly
 - Firewalls between external and internal network
 - External DNS servers in the DMZ
 - Internal DNS servers in the internal network

Conclusions: how to handle DNS Security (4/4)

- Additional security measures
 - Secret Key Transaction Authentication for DNS (TSIG)
 - Can be used to ensure authentication and integrity for queries, responses, zone transfers, dynamic updates
 - The communication parties need a shared secret
 - Good performance
 - DNS Security Extensions (DNSSEC)
 - Public-key methods
 - Provides scalability but bad performance
- Security is a process
 - Monitor CERT and similar organizations, monitor relevant mailing lists

DNSSEC Deployment (1/2)

- DNSSEC deployment has started
 - http://en.wikipedia.org/wiki/
 List_of_Internet_top-level_domains
 - http://labs.ripe.net/Members/wnagele/dnssecdeployment-today
 - the root is signed
 - http://www.root-dnssec.org/

DNSSEC Deployment (2/2)

- .gov has mandated signing for child zones (http:// www.dnssec-deployment.org/)
 - some experiences
 - » Key Signing Key rollover issues
 - » Timing issues (for example expired signatures)
 - » name server that are not DNSSEC capable have been run with signed zones

Some interesting books and links

- Cricket Liu, Paul Albitz, DNS & BIND
 - the DNS book
- http://datatracker.ietf.org/wg/dnsext/
- http://www.isc.org/
- www.menandmice.com
- http://www.dnssec-deployment.org
- http://www.dnssec.net/