Intro	Architecture	MIB	Protocol	In Practice	Niksula

Network Management

Jaakko Kotimäki

Aalto University

17.04.2012

Jaakko Kotimäki Network Management Aalto University

・ロト ・日本・ ・ 日本

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Noture	ork Managem	ant			
Netwo	ork ivianagem				

"When you have 100s of computers in a network or you are running a backbone, you are almost always interested about the state of the network nodes and want to know about the traffic flows." – Timo Kiravuo

Intro	Architecture	MIB	Protocol	In Practice	Niksula

Using the network to manage the network

- Network management requires a protocol which should:
 - Not generate too much load on the network and nodes
 - Be affected as little as possible by congestion, packet loss, outages etc.
 - Report meaningful information about the network and its nodes
 - Not block the management or managed nodes

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Netwo	rk managem	ent tasks			

- ITU-T Telecommunications Management Network recommends FCAPS network management model
- A useful check list:
 - Fault Management
 - Configuration Management
 - Accounting
 - Performance Management
 - Security Management
- OSI CMIP (Common Management Information Protocol) implements this as a single protocol

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

▲ロ → ▲暦 → ▲ 臣 → ▲ 国 → ● ● ●

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Networ	k Manageme	nt with S	SNMP		

- Simple Network Management Protocol (SNMP)
- IETF's network management protocol and architecture
- Four defined components:
 - Network elements have a small server program called agent
 - Management station queries network elements for information
 - Simple Network Management Protocol for exchanging information between agents and management station
 - Management Information Base (MIB) defines the information given by SNMP agents

Intro	Architecture	MIB	Protocol	In Practice	Niksula
.					

SNMP architecture

Aalto University

Image: A matrix

Jaakko Kotimäki

Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMF	P Agent				

- The agent is a server on the managed device that collects information of the system
- Sources of information:
 - Operating system tables
 - Network interfaces
 - Software (servers)
- The agent replies to SNMP queries from the management station
- Commercial and freeware implementations
- Typically an agent comes with the operating system

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Mana	agement static	on			

- Typically commercial or free software running on a workstation
- The network management station software queries various agents in network elements for information
- The management station software reads the MIB descriptions
- The management software has addresses of the managed network elements
- The management software knows what particular information to fetch from the element

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - のQ@

Jaakko Kotimäki Network Management

			In Practice	Niksula
MIB desc	riptions			

- The administrators read the MIB descriptions to understand the data
- The management software keeps the MIB descriptions in files for reference
- MIB description specifies the data on the managed equipment as variables
- Variables can be queried and set by the manager
- Variables are named using Object IDentifiers (OIDs), a hierarchical scheme, e.g. iso.org.dod.internet.mgmt.mib-2
- MIB descriptions are written using ASN.1 (Abstract Syntax Notation One)

Intro	Architecture	MIB	Protocol	In Practice	Niksula
MIB e	example				

The OID of the element is 1.3.6.1.2.1.1.3 – or iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

```
sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The time (in hundredths of a second)
since the network management portion
of the system was last re-initialized."
::= { system 3 }
```

Intro	Architecture	MIB	Protocol	In Practice	Niksula
MIB	datatypes				

Most common types

- Integer, usually signed 32 bit
- Octet String, a sequence of bytes
- Gauge, can go up and down within a range
- Counter, grows until it rolls to zero at max value (2³²)
- TimeTicks, time measure in hundredths of seconds
- Data can also be stored in tables
- More complex data types can be constructed using sequence and union

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Using	MIB datatyp	es			

- Integers and octet strings are useful for relatively static data
- Gauge can be for example the CPU load as percents
- Counter is especially useful for collecting traffic statistics
 - It grows only up and at the max value it rolls around
 - The counter should be read several times before it rolls around to obtain a correct reading
 - The management station is in charge of interpreting the counter and collecting statistics
 - The agent just keeps the current state of variables

Intro	Architecture	MIB	Protocol	In Practice	Niksula
MIB na	ming tree				

Every SNMP variable has a place in the global MIB tree

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Examp	ole: MIB-II				

- The Internet MIB-II database (RFC-1213) defines commonly used MIB variables for Internet network elements
- Standard protocol MIBs start with 1.3.6.1.2.1 (iso.org.dod.internet.mgmt.mib-2)
 - The same management software can be used for monitoring network devices by different vendors
 - E.g. the IP address for the host is held in the mib-2.ip.ipAddrTable table (one host may have many addresses)
- Enterprise MIBs start with 1.3.6.1.4.1 (iso.org.dod.internet.private.enterprises)
 - Manufacturers (or anyone) can define their own MIB descriptions

Image: A match a ma

- Get your enterprise MIB address from IANA
- Understand the properties of the phenomenon to be monitored or controlled
 - webcam, vending machine, toaster...
- Describe the data to be transferred in terms of single variables and tables
- Write the MIB definition in ASN.1 language
- Select a module from an existing SNMP agent and rewrite it to implement the MIB
- ► Feed your MIB file to a management software and test it

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

▲ロ ▶ ▲ 圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 回 ▶

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNM	^D protocol				

- Works on top of UDP
- Agent listens port 161
- Management station listens port 162 for trap messages
- Simple get/set protocol: device is managed by setting variables

Image: Image:

- Messages are coded with ASN.1
- Three major versions

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMPv1					

- Defined in RFC-1157 (1990)
- Five message types:
 - get-request fetching the value of some variables
 - get-next-request fetch the value of next OID (useful)
 - set-request set the value of some variables
 - get-response return message from queries above
 - trap notify the manager

Image: A matrix of the second seco

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMPv1	messages				

・ロト ・回ト ・ 回ト ・

Aalto University

Network Management

Jaakko Kotimäki

Intro	Architecture	MIB	Protocol	In Practice	Niksula

SNMP message format

Jaakko Kotimäki

Network Management

► E ∽ Q C Aalto University

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNM	P message for	mat			

- Version is the version number of the protocol
- Community is the common name for managed area and it can be used as a clear-text password between the manager and agent
- PDU Type tells the message type
- Request ID is an identifier for separating the requests
- Error Status and Error Index are used in get-response to indicate problems e.g. noSuchName or readOnly.
- Variable Bindings is a list of object name-value pairs

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMI	Pv1 Traps				

- A SNMP agent can send a trap to the SNMP manager when something happened in the agent that the manager wants to know about
- There is no reply, which means that traps are not reliable
- Traps should be considered an informational addition to the normal get -sequences of collecting the management information

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMP	v1 Traps				

VERSION (integer)
COMMUNITY (string)
PDU TYPE (4=trap)
ENTERPRISE
AGENT ADDRESS
TRAP TYPE (0-6)
SPECIFIC CODE
TIMESTAMP
VARIABLE BINDINGS

メロト メポト メヨト メヨト

Jaakko Kotimäki

Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMPv1	l Traps				

- PDU Type = 4 = trap
- Enterprise is the OID of the enterprise
- Agent Address is the address of the device
- ► Trap Type, six pre-defined traps, plus one vendor specific
 - ColdStart
 - WarmStart
 - linkDown
 - linkUp
 - authenticationFailure
 - egpNeighborLoss
 - enterpriseSpecific
- Specific Code some enterprise specific trap code
- Timestamp is the time since last initialization of the network

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMF	Pv2				

- Extends the original SNMP version
- Multiple subversions: v2, v2c and v2u, several RFCs each
- New features:
 - GetBulkRequest transfer potentially large amount of data, efficient for especially large tables
 - InformRequest implements acknowledged trap
 - Trap format changes
- Security enhancements in v2u, not widely used

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNMI	Pv3				

- ▶ RFC 3410-3418 (2002), an Internet standard STD0062 (2004)
- A new framework (architecture) for processing the messages
- Provides important security features:
 - Confidentiality, message integrity, authentication
- Not widely deployed yet

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNM	P and security	/			

- V1 has no security in the protocol
- ▶ V2 has some security features, not widely used
- V3 has cryptographic integrity and confidentiality protection for the protocol
 - User-based Security Model (USM) RFC-3414
- New:
 - ▶ RFC-5592 Secure Shell Transport Model for SNMP, 2009
 - RFC-5953 TLS Transport model for SNMP, 2010

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNM	P and security	in pract	ice		

- SNMP should not be used in untrusted networks
 - And blocked in the firewall
 - Better yet, in its own virtual LAN (VLAN) in a private network

Image: Image:

 IPSec may be used directly to protect the SNMP traffic that uses UDP

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

▲日 ▶ ▲ 圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● ④ ● ●

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
SNM	^{>} freeware too	h			
		515			

- Several freeware packages are available that have both an agent and the command line tools for management
- The (command line) tools usually correspond to the SNMP protocol actions e.g. snmpget
 - Additionally often included the useful snmpwalk tool which traverses an OID branch of the MIB tree using the get-next-response
- DEMOS!

Network Management in action using SNMP

- When the management software finds something wrong, e.g. one of the power supplies of the switch fails, the management software sends an email alert
- Network manager may set variables in a network element, e.g. changing the network (VLAN) of a switch port to another
- A network element may send a trap, for example a printer may signal that it is out of paper

Intro	Architecture	MIB	Protocol	In Practice	Niksula		
Practical network management							

- Network management is about monitoring and tuning performance
 - How to locate performance bottlenecks
 - Planning for future needs
- Sometimes it is about disaster recovery
 - Devices break or an ignorant user causes problems for example by accidentally creating a loop to the network
 - Denial of Service attacks
 - Hunting down infected or misbehaving devices e.g. laptops or network flooding computers

- Activate agents at the nodes to be monitored
- Configure the management station
 - Decide which OIDs to monitor
 - For a router a table of interfaces
 - How often to poll
- Enjoy the show
 - Learn to interpret the data and behavior of the devices
 - Produce nice graphs and summaries for the management

Jaakko Kotimäki Network Management

Intro	Architecture	MIB	Protocol	In Practice	Niksula
Outline					

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

▲ロ ▶ ▲ 圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 回 ▶

Jaakko Kotimäki Network Management

- One router and about 50 switches
- Hundreds of hosts
- Multiple subnets from HUT domain
- Devices managed via SNMP include printers, servers and network
- Other management tools: cfengine/puppet(configuration), firewall managed manually
- DEMO

Intro	Architecture	MIB	Protocol	In Practice	Niksula
-	-				
Ques	tions?				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Jaakko Kotimäki Network Management