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Scope of the Lecture

● General overview of protocol design
– Characteristics of successful protocols
– Different protocol design models
– Security
– Standardization

● What this lecture is not about
– Programming of protocols
– Web-protocol development



  

Related Courses at Aalto

● S-38.3159 Protocol Design
● T-106.4300 Web Software Development
● T-75.1110 XML-kuvauskielten perusteet
● T-109.4300 Network Services Business 

Models
● T-109.5410 Technology Management in 

the Telecommunications Industry
● T-110.5241 Network Security
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Introduction to Protocol Design
● Need to exchange information between two or 

more entities (devices or software)

– Need a common language (protocol)

● Protocol specifications define on-wire formats

– Sometimes include implementor “hints”

● Can't have the cake and eat it all

– Reliable vs. fast

– Extensible vs. simple

– Trade-offs often necessary

● Non-technical constraints 

– Money, time and human resources



  

Design and Specification

● Three technical aspects:
– Host processing: protocol states, transitions, 

retransmissions, ordering of packets

– What goes on wire: serialization, formatting, framing 
and fragmentation, messages, round trips

– Deployment: wireless networks, mobile devices, 
sensors, firewalls, NATs, etc

● Remember:
– Design it as simple as you can, but not simpler..

– Reuse/extend existing design or protocol if possible

– Separate policy from mechanism



  

Initial Success Factors

● Early adopters get the benefits (RFC5218)
– No extra infrastructure needed
– Changes required only at the client side

● Meets a real (business) need
● Incrementally deployable

– No flag day!

● Open code, specs, maintenance and 
patent free, good technical design

– Surprisingly, these have secondary value



  

Wild Success Factors

● “Wild success” means that protocol is 
deployed beyond original plans

● Factors for success
– Extensibility
– Scalability
– Security threats sufficiently migrated

● See RFC5218 (What Makes for a 
Successful Protocol)



  

Technical Design Criteria

● Extensibility
● Reliability
● Scalability
● Stateless servers
● Ordered delivery
● Congestion control
● Error correction
● Error recovery

● Zero configuration
● Incr. deployable
● Rest vs. RPC
● Energy efficiency
● Security
● Privacy
● Availability
● Anonymity



  

Scalability

● Is the protocol designed to endure a drastic 
increase in the number of users?

– Bottlenecks: infrastructure and servers
● Computational overhead and complexity

– Small devices with limited CPU and batteries
– Wireless networking consumes energy!

● Decentralization (distributable protocols)

– Load balancing (server redundancy)
● Caching for optimized performance



  

Protocol Evolution

● Mandatory vs. optional protocol parameters

– Optional for backwards compatibility
● Extension compatibility

– Do all of the N extensions work together?
● Backwards incompatible extensions introduced

– Bump protocol version from v1 to v2

– Versioning should be included from day one!
● Be conservative in sending and liberal in 

receiving



  

Interoperability

● Interoperability tests verify compatibility of two 
different implementations

– Protocol specifications
● Multiple implementations from different 

vendors or organizations

– Are the implementations compatible?

– Is the specification strict enough?



  

Network Environments
● Single-hop vs. multi-hop

● Access Media (wired vs. wireless)

● LAN, WAN

● Trusted vs. untrusted networks

● NATted/IPv4 vs. IPv6 networks

● Infrastructure: name servers, middleboxes
● Device mobility, network mobility

● Multihoming, multiaccess, multipath

● Delay tolerant networking (e.g. email)



  

Design Models
● Architectural models

– Centralized vs. distributed service

– Client-server vs. peer-to-peer

– Cloud computing

– REST vs. RPC

● Communication models

– Unicast, anycast, broadcast, multicast

– Point-to-point vs. end-to-end

– End-to-end vs. end-to-middle

– Internet routing vs. overlay routing

– Asynchronous vs. synchronous

– Byte transfer vs. messaging oriented



  

Representational State Transfer

● REST Constraints
– Separation of concerns (client-server)
– Stateless server
– Cacheability
– Support for intermediaries (proxies)
– Uniform interface

● Benefits
– Scalability
– Simple interfaces



  

REST vs. RPC

● Remote Procedure Call (RPC)
– Non-uniform APIs
– Complex operations

● RESTful web is usually a better choice 
than SOAP

– Easier to develop and to scale up
– Web is resource oriented by its nature

● See RESTful Web Services (Richardson)



  

Layering

● Abstract and isolate different protocol 
functionality on different layers of the stack

– A layer should be replaceable with another
● Application layer: more intelligent decisions, 

easier to implement, easier to deploy

– Application frameworks and middleware
● Lower layers: generic purpose “service” to 

application layer => software reuse

● Strict vs. loose layering (cross-layer interaction)



  

Addressing and Naming

● Human-readable names
– Hostnames, FQDN, URIs

– Subject to internationalization issues

● Machine-readable names
– ISP or device manufacturer assigned (IP address, 

MAC addresses)

– Self-assigned addresses (ad-hoc networks)

– Cryptographic names (PGP, SSH, CGA, HIP)

– Do not embed IP addresses in application-layer 
protocols (see RFC5887)

● Translation of names (DNS, directories, etc)



  

States and Transitions

● State machine models different phases of 
communication

– Example: handshake, communications, connection 
maintenance and tear down

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and state 
does not expire

– Soft state: needs to refreshed, otherwise expires



  

Example State Machine

START State 1

State 2

Receive msg A

Send msg B

Recv msg C
State 3

Send msg D



  

Packet Flow Diagrams

● Illustrate the protocol to the reader of the 
protocol specification

– Use case, not a full specification

● Two or more communicating entities
● Illustrates also the flow of time



  

Example Flow Diagram

Client Proxy Server

1. GET /

2. GET /

3. <RESPONSE>

4. <RESPONSE>

3. <RESPONSE>



  

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● Related terms: PDU, datagram, framing, 

fragmentation, MTU
● Text encoding (app-layer protocols)

– XML, HTML, SIP

– Easier to debug for humans

– Lines usually separated by newlines

– Character set (internationalization) issues

– Bandwidth inefficient (compression could be 
used)



  

Protocol Encoding 2/2

● Binary formats
– Integers in big-endian format

– Padding for alignment

– Bandwidth efficient

– Example protocols: IPv4, IPv6, TCP, UDP

– Example formats: XDR, ASN.1, BER, TLV

● Typically binary formats are visualized in 
“box notation” for engineers in protocol 
specifications



  

Box Notation Example (RFC793)



  

Security 1/4

● Internal vs. external threat

– Attacker within company or outside

– Local software (e.g. trojan) vs. remote attack
● Active (modify packets) and passive (read 

packets) attacks

● Man-in-the-middle
● Blind attack

● Reflection, amplification, flooding

● DoS vs. DDos attack



  

Security 2/4

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!

● Countermeasures against attacks for availability 
(resource depletion, exhaustion, DoS/DDoS):

– Rate limitation

– Intermediaries (firewalls, network intrusion detection)

– Capthas, computational puzzles

– Replicated resources (e.g. cloud networking)



  

Security 3/4

● Opportunistic security vs. infrastructure

– Opportunistic security is used e.g. in SSH

– Leap of faith/time or huge deployment cost?

● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the user know that the connection is 
secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting



  

Security 4/4

● Do not hard-code cryptographic algorithms into the 
protocol!

– Algorithms are safe only until a flaw is found

– For example, MD5 is depracated

– Also key lengths deprecate due to Moore's laws 

● Better to embed in the design from day one

– Security difficult to add after deployment

– Privacy even more difficult to add afterwards
● The overall strength of the system is as strong as its 

weakest link

● Reuse existing protocols (e.g. TLS), do not invent new! 



  

Protocol Correctness
● Verify that the protocol works

– Peer review

– Implement your own specification

– Implementation insight

– Performance analysis

– Mathematical (crypto) analysis

– Scalability analysis with simulators

● Ready for deployment?

– More difficult to fix already deployed software

– Future compatibility



  

Deployment Obstacles

● Firewalls

– Firewalls drop packets with IPv4 options

– TCP options are much better

– End-host firewalls (virus scanners, Selinux)

● Network Address Translators (NATs)

– Engineering of end-to-end (or P2P) protocols difficult

– By default, NATs block new incoming connections

– Overlapping namespaces (error prone)

– Easier naming with split-horizon DNS

– Unreliable penetration with uPnP, ICE or Teredo

– NATs support only TCP and UDP (and maybe IPsec)

– Old NAT devices have different NAT algorithms

– See also RFC4787, 2775 and 6250



  

Standardization

● Why?

– Even wizards make errors; more reviewers, less errors

– Customer wants to avoid vendor lock-in?

– Security

– Drawback: standardization takes time

● Few standards organizations

– W3C: Web standardization

– IETF: Applications, routing, transport,  IPv4/IPv6, security

– IEEE: Data-link layer (ethernet, wlan), POSIX, ..

– ITU-T, ETSI, 3GPP: Cellular technology



  

Related Literature 1/2

● Theory
– Principles of Protocol Design, Sharp, 1995
– Reasoning about Knowledge, Fagin et al, 

1995

● Protocol Engineering
– RFC3117: On the Design of Application 

Protocols, Rose, 2001
– RFC6250: Evolution of the IP Model, Thaler, 

2011
– RESTful Web Services, Richardson et al, 

2007, O'Reilly



  

Related Literature 2/2

● Service Adoption and Deployment
– Network Services: Investment Guide, 

Gaynor, 2003
– RFC5218: What Makes for a Successful 

Protocol, Thaler et al, 2008

● Security:
– RFC3631: Security Mechanisms for the 

Internet, Bellovin et al, 2003
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