

On Protocol Design

T-110.4100 Computer Networks
27.3.2012

Miika Komu <miika@iki.fi>
Data Communications Software Group

CSE / Aalto University

mailto:miika@iki.fi

Scope of the Lecture

● General overview of protocol design
– Characteristics of successful protocols
– Different protocol design models
– Security
– Standardization

● What this lecture is not about
– Programming of protocols
– Web-protocol development

Related Courses at Aalto

● S-38.3159 Protocol Design
● T-106.4300 Web Software Development
● T-75.1110 XML-kuvauskielten perusteet
● T-109.4300 Network Services Business

Models
● T-109.5410 Technology Management in

the Telecommunications Industry
● T-110.5241 Network Security

Related Courses at Aalto

● S-38.3159 Protocol Design
● T-106.4300 Web Software Development
● T-75.1110 XML-kuvauskielten perusteet
● T-109.4300 Network Services Business

Models
● T-109.5410 Technology Management in

the Telecommunications Industry
● T-110.5241 Network Security

Introduction to Protocol Design
● Need to exchange information between two or

more entities (devices or software)

– Need a common language (protocol)

● Protocol specifications define on-wire formats

– Sometimes include implementor “hints”

● Can't have the cake and eat it all

– Reliable vs. fast

– Extensible vs. simple

– Trade-offs often necessary

● Non-technical constraints

– Money, time and human resources

Design and Specification

● Three technical aspects:
– Host processing: protocol states, transitions,

retransmissions, ordering of packets

– What goes on wire: serialization, formatting, framing
and fragmentation, messages, round trips

– Deployment: wireless networks, mobile devices,
sensors, firewalls, NATs, etc

● Remember:
– Design it as simple as you can, but not simpler..

– Reuse/extend existing design or protocol if possible

– Separate policy from mechanism

Initial Success Factors

● Early adopters get the benefits (RFC5218)
– No extra infrastructure needed
– Changes required only at the client side

● Meets a real (business) need
● Incrementally deployable

– No flag day!

● Open code, specs, maintenance and
patent free, good technical design

– Surprisingly, these have secondary value

Wild Success Factors

● “Wild success” means that protocol is
deployed beyond original plans

● Factors for success
– Extensibility
– Scalability
– Security threats sufficiently migrated

● See RFC5218 (What Makes for a
Successful Protocol)

Technical Design Criteria

● Extensibility
● Reliability
● Scalability
● Stateless servers
● Ordered delivery
● Congestion control
● Error correction
● Error recovery

● Zero configuration
● Incr. deployable
● Rest vs. RPC
● Energy efficiency
● Security
● Privacy
● Availability
● Anonymity

Scalability

● Is the protocol designed to endure a drastic
increase in the number of users?

– Bottlenecks: infrastructure and servers
● Computational overhead and complexity

– Small devices with limited CPU and batteries
– Wireless networking consumes energy!

● Decentralization (distributable protocols)

– Load balancing (server redundancy)
● Caching for optimized performance

Protocol Evolution

● Mandatory vs. optional protocol parameters

– Optional for backwards compatibility
● Extension compatibility

– Do all of the N extensions work together?
● Backwards incompatible extensions introduced

– Bump protocol version from v1 to v2

– Versioning should be included from day one!
● Be conservative in sending and liberal in

receiving

Interoperability

● Interoperability tests verify compatibility of two
different implementations

– Protocol specifications
● Multiple implementations from different

vendors or organizations

– Are the implementations compatible?

– Is the specification strict enough?

Network Environments
● Single-hop vs. multi-hop

● Access Media (wired vs. wireless)

● LAN, WAN

● Trusted vs. untrusted networks

● NATted/IPv4 vs. IPv6 networks

● Infrastructure: name servers, middleboxes
● Device mobility, network mobility

● Multihoming, multiaccess, multipath

● Delay tolerant networking (e.g. email)

Design Models
● Architectural models

– Centralized vs. distributed service

– Client-server vs. peer-to-peer

– Cloud computing

– REST vs. RPC

● Communication models

– Unicast, anycast, broadcast, multicast

– Point-to-point vs. end-to-end

– End-to-end vs. end-to-middle

– Internet routing vs. overlay routing

– Asynchronous vs. synchronous

– Byte transfer vs. messaging oriented

Representational State Transfer

● REST Constraints
– Separation of concerns (client-server)
– Stateless server
– Cacheability
– Support for intermediaries (proxies)
– Uniform interface

● Benefits
– Scalability
– Simple interfaces

REST vs. RPC

● Remote Procedure Call (RPC)
– Non-uniform APIs
– Complex operations

● RESTful web is usually a better choice
than SOAP

– Easier to develop and to scale up
– Web is resource oriented by its nature

● See RESTful Web Services (Richardson)

Layering

● Abstract and isolate different protocol
functionality on different layers of the stack

– A layer should be replaceable with another
● Application layer: more intelligent decisions,

easier to implement, easier to deploy

– Application frameworks and middleware
● Lower layers: generic purpose “service” to

application layer => software reuse

● Strict vs. loose layering (cross-layer interaction)

Addressing and Naming

● Human-readable names
– Hostnames, FQDN, URIs

– Subject to internationalization issues

● Machine-readable names
– ISP or device manufacturer assigned (IP address,

MAC addresses)

– Self-assigned addresses (ad-hoc networks)

– Cryptographic names (PGP, SSH, CGA, HIP)

– Do not embed IP addresses in application-layer
protocols (see RFC5887)

● Translation of names (DNS, directories, etc)

States and Transitions

● State machine models different phases of
communication

– Example: handshake, communications, connection
maintenance and tear down

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and state
does not expire

– Soft state: needs to refreshed, otherwise expires

Example State Machine

START State 1

State 2

Receive msg A

Send msg B

Recv msg C
State 3

Send msg D

Packet Flow Diagrams

● Illustrate the protocol to the reader of the
protocol specification

– Use case, not a full specification

● Two or more communicating entities
● Illustrates also the flow of time

Example Flow Diagram

Client Proxy Server

1. GET /

2. GET /

3. <RESPONSE>

4. <RESPONSE>

3. <RESPONSE>

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● Related terms: PDU, datagram, framing,

fragmentation, MTU
● Text encoding (app-layer protocols)

– XML, HTML, SIP

– Easier to debug for humans

– Lines usually separated by newlines

– Character set (internationalization) issues

– Bandwidth inefficient (compression could be
used)

Protocol Encoding 2/2

● Binary formats
– Integers in big-endian format

– Padding for alignment

– Bandwidth efficient

– Example protocols: IPv4, IPv6, TCP, UDP

– Example formats: XDR, ASN.1, BER, TLV

● Typically binary formats are visualized in
“box notation” for engineers in protocol
specifications

Box Notation Example (RFC793)

Security 1/4

● Internal vs. external threat

– Attacker within company or outside

– Local software (e.g. trojan) vs. remote attack
● Active (modify packets) and passive (read

packets) attacks

● Man-in-the-middle
● Blind attack

● Reflection, amplification, flooding

● DoS vs. DDos attack

Security 2/4

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!

● Countermeasures against attacks for availability
(resource depletion, exhaustion, DoS/DDoS):

– Rate limitation

– Intermediaries (firewalls, network intrusion detection)

– Capthas, computational puzzles

– Replicated resources (e.g. cloud networking)

Security 3/4

● Opportunistic security vs. infrastructure

– Opportunistic security is used e.g. in SSH

– Leap of faith/time or huge deployment cost?

● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the user know that the connection is
secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting

Security 4/4

● Do not hard-code cryptographic algorithms into the
protocol!

– Algorithms are safe only until a flaw is found

– For example, MD5 is depracated

– Also key lengths deprecate due to Moore's laws

● Better to embed in the design from day one

– Security difficult to add after deployment

– Privacy even more difficult to add afterwards
● The overall strength of the system is as strong as its

weakest link

● Reuse existing protocols (e.g. TLS), do not invent new!

Protocol Correctness
● Verify that the protocol works

– Peer review

– Implement your own specification

– Implementation insight

– Performance analysis

– Mathematical (crypto) analysis

– Scalability analysis with simulators

● Ready for deployment?

– More difficult to fix already deployed software

– Future compatibility

Deployment Obstacles

● Firewalls

– Firewalls drop packets with IPv4 options

– TCP options are much better

– End-host firewalls (virus scanners, Selinux)

● Network Address Translators (NATs)

– Engineering of end-to-end (or P2P) protocols difficult

– By default, NATs block new incoming connections

– Overlapping namespaces (error prone)

– Easier naming with split-horizon DNS

– Unreliable penetration with uPnP, ICE or Teredo

– NATs support only TCP and UDP (and maybe IPsec)

– Old NAT devices have different NAT algorithms

– See also RFC4787, 2775 and 6250

Standardization

● Why?

– Even wizards make errors; more reviewers, less errors

– Customer wants to avoid vendor lock-in?

– Security

– Drawback: standardization takes time

● Few standards organizations

– W3C: Web standardization

– IETF: Applications, routing, transport, IPv4/IPv6, security

– IEEE: Data-link layer (ethernet, wlan), POSIX, ..

– ITU-T, ETSI, 3GPP: Cellular technology

Related Literature 1/2

● Theory
– Principles of Protocol Design, Sharp, 1995
– Reasoning about Knowledge, Fagin et al,

1995

● Protocol Engineering
– RFC3117: On the Design of Application

Protocols, Rose, 2001
– RFC6250: Evolution of the IP Model, Thaler,

2011
– RESTful Web Services, Richardson et al,

2007, O'Reilly

Related Literature 2/2

● Service Adoption and Deployment
– Network Services: Investment Guide,

Gaynor, 2003
– RFC5218: What Makes for a Successful

Protocol, Thaler et al, 2008

● Security:
– RFC3631: Security Mechanisms for the

Internet, Bellovin et al, 2003

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

