
Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Network Programming

Samuli Sorvakko/Trusteq Oy

Telecommunications software and Multimedia Laboratory
T-110.4100 Computer Networks

January 31, 2012

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Agenda

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Introduction

Introduction

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Introduction

Overview

Wide-area concurrency

Two or more entities

Client-server, peer-to-peer, unidirectional or bidirectional
multicast, broadcast, ...

Multiple levels of information exchange

From TCP/IP point of view, HTTP is an application
From SOAP or AJAX point of view, HTTP is a transport
From a suitably abstracted framework’s point of view, SOAP is
a transport...

All quite complex, eh?

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Introduction

Managing complexity

Well-known protocols

“Tried and true”
Reference implementations and/or test frameworks exist

Layering

Only get to worry about a part of the communication

Modularization / compartmentalization

“You parse these bits and I’ll parse these”
Maybe use ready-made components for e.g. input handling
even if the rest of the implementation is your own

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Socket Programming

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Overview

Overview

The UNIX way

Introduced in 1983 (4.2 BSD Unix)

Bind together software and the communication channels they
use

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Overview

Overview cont’d.

Bind together four items:

Remote host address
Remote host port number
Local host address
Local host port number

Also additional information:

Socket protocol (Local, IPv4, IPv6, IPX, X25, ...)
Communication type (Stream, datagram, raw, ...)
Other options (blocking/non-blocking, keepalive, ...)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Client sockets

Client sockets

Create a socket (binding it to a file descriptor)

Connect the socket with the other party

int sockfd=socket(PF_INET, SOCK_STREAM, 0);

connect(sockfd,

(struct sockaddr *) &remoteaddr,

sizeof(struct sockaddr));

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Client sockets

Client sockets cont’d.

Of course need to verify return values

The remoteaddr struct needs to be filled

sin_family (AF_INET)
sin_port (generally via htons())
sin_addr (usually from hostent struct from
gethostbyname())

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Server sockets

Server sockets

A bit more complicated than the client
Again, socket needs to be created
Then bound to desired protocol, port and listening address
After that, indicate willingness to listen to the OS
Now ready to accept connections

int sockfd=socket(PF_INET, SOCK_STREAM, 0);

bind(sockfd,

(struct sockaddr *) &myaddr,

sizeof(struct sockaddr));

listen(sockfd, backlog);

sin_size=sizeof(struct sockaddr_in);

incoming_fd=accept(sockfd,

(struct sockaddr *)&remote_addr,

&sin_size);

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Server sockets

Server sockets cont’d.

What is usually done here is to fork() a child process

New connections can be accepted as quickly as possible

Old connections are served by the children asynchronously

Other keywords: select(2), poll(2)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Sockets recap

Sockets recap

Examples were for TCP sockets, UDP similar

Very simplified examples, don’t do it like this :)

What is sent over the socket is decided by programmer

Actual communication is handled by OS, socket operations
are syscalls

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Lower-level stuff

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Lower-layer communication

Lower-layer communication

The previous example was for TCP

It’s also possible to communicate using lower-layer protocols

Raw IP, Ethernet or other link-layer protocols, ...

Usually not needed but when you need it, you need it badly :)

Often requires more than standard user privileges

Can be used to provide userland support for protocols not
supported by kernel

Also possible to force interface to process all communication,
not just what’s intended to the interface (promiscuous mode)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Lower-layer communication

Sockets...again

The same sockets with different options are used for this too

You can also use socket options to pass information to lower
layers

QoS, path optimizations, power levels(!), ...

Basically you use sockets to build a link between the network
interface and your software

Remember, when using e.g. raw IP, the kernel won’t help you

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Higher-level interfaces

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

RPC

Remote Procedure Call

Developed by Sun Microsystems

Originally for NIS and NFS

Defines a data representation for binary information (byte
orders!)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

RPC

Remote Procedure Call cont’d.

Uses a portmapper portmap/rpcbind instead of direct
communication

RPC server opens up a free UDP or TCP port and registers
with portmapper

RPC client contacts portmapper and gets exact location of
server

Also contains some options for authentication etc.

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

RMI

Java Remote Method Invocation

Also developed by Sun Microsystems

Provides a way for Java object invocation from other Java
VMs

Supports object serialization

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

RMI

Java Remote Method Invocation cont’d

Remote end:

Export interfaces
public interface MyInterface extends Remote{}

Comms failures will be reported with RemoteException

Creates instance(s) of a remote object
Register the object(s) with RMI remote object registry

Local end:

Request the object from the remote server, which returns a
“Stub” instance
Methods invoked on the stub are run on the server, with RMI
serializing and deserializing the communication

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

CORBA

CORBA

Common Object Request Broker Architecture

Vendor-independent way for remote objects

Specified by Object Management Group (OMG...)

IDL, Interface Definition Language describes exported
interfaces

Similar to RMI in principle

Mappings exist for C, C++, Java, COBOL, Lisp, Python...

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

CORBA

CORBA cont’d

Interface is well separated from the implementation

CORBA is well suited for middleware (“glue”) tasks

Allows for access control on object level

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

DCOM

Microsoft’s offerings

Distributed Component Object Model (DCOM)

Based on “local” COM, with added RPC, serializing and
garbage collection functionality

.NET Remoting

Part of the .NET framework

Windows Communication Foundation

Unifies .NET comms programming models

Web services, .NET Remoting, Message Queues, Distributed
Transactions
Can also serve AJAX web request via JSON encoder

Idea here is exactly the same as in CORBA et al, remote
invocation of procedures or methods in objects.

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Webserv

Web Services

“Leverage the power of the Web”

Machine-to-machine communication

SOAP: Extensible, XML-based communication over HTTP

WSDL: Interface description language

UDDI (Universal Description Discovery and integration):
Publishing and discovery of Web services

Can be used in many ways; RPC emulation, “Service-oriented
architecture” (SOA), Representational State Transfer (REST)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Webserv

Web Services

AJAX (Asynchronous JavaScript and XML) could also be
categorized as a web service

Not strictly machine-to-machine

User’s browser may do operations without interaction

Data exchange between server and browser

Only a part of the web page is refreshed

Communication with XMLHttpRequests (or IFrames)

Not a standard or a technology, describes functionality

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security

1 Introduction and Overview

2 Socket Programming

3 Lower-level stuff

4 Higher-level interfaces

5 Security

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security

Cannot trust the network

Client cannot trust server

Server must not trust client

What packets you receive is usually outside your control

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Input handling

Being on a network means communicating with more entities
than you might think

What if one of the entities is malicious?

What happens to a server if a client sends it e.g. \0’s, SQL
statements, very large amounts of data...

What if a server uses a value in a protocol field directly as an
index to an internal data structure?

What if a server e.g. dumps core or other internal details in a
response to a client when an error occurs?

What if a server only checks for authorization when initiating
communication but never again?

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Input handling

Usually there are limits for things
Field length, allowed characters, timeouts etc.

It is best to make the limits explicit and force validation
Example: A field in a text-based protocol contains a length for
the payload (e.g. HTTP Content-Length:)

Check that the length is not negative
Check that the length is a number
Do not trust the reported length...

Example: A server-side AJAX handler will look up entries
from an SQL database

Check that the request is sane (e.g. discard SQL wildcards)
Check that the request contains NO fragments of SQL
statements
Remember to check for different character encodings,
character entities etc...

Input handling should be handled in a consistent manner
throughout the application

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Application logic

Usually apps have different states they can be in

Waiting for connection, authenticating, authorized but idle,
data transfer....

States can be implicit or explicit

As with input handling, explicit usually better

Need to verify that the state transition is proper

Initiating a monetary transaction not allowed without
authentication and authorization
Inserting routing table entries not allowed if routing table static
...

States are application specific

State machines will help immensely (don’t we all love
theoretical computer science :)

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Authorization

In many cases there’s a need to verify who is requesting an
operation before performing it

Clients can be authenticated in many ways

Authentication is not enough, also need to grant authorization

Need to verify authorization before each operation

Hiding functionality is not enough

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Data security

What to do when transmitting confidential data?

How to make sure communication partners are who they
should be

How to ensure tamper resistance?

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Transport Layer Security

TLS (Transport Layer Security, used to be SSL - Secure
Sockets Layer)

Originally developed by Netscape, now in RFCs as Proposed
Standard

Public-key based security (PKI, subject of a further course..)

Client can verify server, server can also verify client (not used
often)

Handshake to determine encryption parameters

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - Transport Layer Security implementation

How to use it in your own project? Implement yourself?

Implementing cryptographic protocols correctly is hard. Avoid
it if possible.

Use ready-made implementations instead

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - OpenSSL

OpenSSL is very widely used

Pretty robust and feature-rich implementation

Has both libraries and tools available

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

OpenSSL Client example

SSL_library_init(); // Initializes the library

SSL_CTX *context = SSL_CTX_new(method); // SSL Context

/* Read cert chain */

SSL_CTX_use_certificate_chain_file(context, chainfile);

/* Load trusted CAs /*

SSL_CTX_load_verify_locations(context, CA_LIST, 0);

...

/* Create and connect socket */

socket=socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

connect(sock, (struct sockaddr *) &address,

sizeof(address));

SSL *ssl = SSL_new(context); // Create new SSL struct

BIO *sbio = BIO_new_socket(socket, BIO_NOCLOSE);

SSL_set_bio(ssl,sbio,sbio); // IO Abstraction

r=SSL_write(ssl, request, strlen(request));

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Security - yet again...

Use ready and tested protocol implementations if possible

Use well-known protocols if possible

Design protocols with security on mind from the start

Always test for robustness, not only compliance

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Security overview

Further reading

Richard Stevens: UNIX Network Programming, Volume 1,
Second Edition: Networking APIs: Sockets and XTI, Prentice
Hall, 1998, ISBN 0-13-490012-X

man 2 socket, man 2 connect, man 2 bind and other
UNIX man pages

Sun Java RMI guides,
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

Object Management Group CORBA FAQ and other
documentation,
http://www.omg.org/gettingstarted/corbafaq.htm

Secure Programming for Linux and Unix HOWTO,
http://www.dwheeler.com/secure-programs/

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security

Discussion

Discussion

Comments? Remarks? Questions?

