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Outline 

•  Transport layer 
–  Role and main functionality 
–  TCP and UDP 

•  TCP 
–  Basics 
–  Error control 
–  Flow control 
–  Congestion control 
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Transport layer (cont.) 

•  Offers end-to-end transport of data for applications 
•  Different characteristics 

–  Reliable vs. unreliable 
–  Forward error correction (FEC) vs. Automatic Repeat-reQuest 

(ARQ) 
–  TCP friendly or not 
–  Structured vs. unstructured stream 
–  … 



Reliable vs. best effort service 

•  Reliable transport 
–  Guarantees ordered delivery of packets 
–  Important for e.g. 

•  Signaling messages 
•  File transfer 

–  TCP 

•  Best effort transport 
–  No guarantees of packet delivery 
–  Non-critical data delivery, e.g. VoIP 
–  UDP 
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Role of ports 

•  Well-known port numbers 
–  RFC 2780 (&4443) 
–  0-1023 

•  Registered port numbers 
–  1024-49151 

•  Other port numbers 
–  49152-65535 
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Applications 

IP 



Transport Layer Protocols 

•  UDP 
–  Lightweight protocol 

•  Just port numbering for application multiplexing and integrity 
checking (checksums) to IP 

•  No segmentation 
–  Unreliable connectionless transport service 

•  No acknowledgments and no retransmissions 
•  Checksum optional in IPv4 and mandatory in IPv6 

•  TCP 
–  Reliable service 
–  Our focus for the rest of the lecture… 

• 8 



TCP: Outline 

•  Overview 
–  Largely familiar stuff from T-110.2100 

•  Error control 
•  Flow control 
•  Congestion control 



TCP properties 

•  End-to-end 
•  Connection oriented 

–  State maintained at both ends 
–  Identified by a four-tuple 

•  Formed by the two end point’s IP address and TCP port number 

•  Reliable 
–  Try to guarantee in order delivery of each packet 
–  Buffered transfer 

•  Full Duplex 
–  Data transfer simultaneously in both directions 



TCP properties 

•  Three main functionalities for active connection 

Application Application 

TCP TCP Network 

Sender Receiver 

buffers 

1.  Error control 
§  Deal with the best effort unreliable network 

2.  Flow control 
§  Do not overload the receiving application 

3.  Congestion control 
§  Do not overload the network itself 



TCP-header (RFC 793) 
 0                   10                  20                    31 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|    Source port                |       Destination port        | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        Sequence number                        | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        Acknowledgment number                  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| hdr   |           |U|A|P|R|S|F|                               | 
| length| Varattu   |R|C|S|S|Y|I| Advertized receiver window    | 
|       |           |G|K|H|T|N|N|                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|     Checksum                  |         Urgent-pointer      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Options                    |    Padding    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                             data                              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



TCP options 

•  3 = window scaling 
•  8,10 = Timestamp and echo of previous timestamp 

–  Improve accuracy of RTT computation 
–  Protect against wrapped sequence numbers 

•  2 = Maximum Segment Size (MSS) 
–  Negotiated while establishing connection 
–  Try to avoid fragmentation 

•  1 = No-operation 
–  Sometimes between options, align option fields 

•  0 = End of options 



Connection establishment 

•  Three-way handshake 

<SEQ=100><SYN> 

<SEQ=300><ACK=101><SYN><ACK> 

<SEQ=101><ACK=301><ACK> 

<SEQ=101><ACK=301><ACK><DATA> 

Third packet may contain data: 

• do what 
• I mean 



Terminating connection 

•  Modified three-way handshake 
•  If other end has no more data to send, can be 

terminated one way: 
–  Send a packet with FIN flag set 
–  Recipient acks the FIN packet 

•  After done with the data transfer to the other direction 
–  FIN packet and ack to the inverse direction 



TCP Outline 

•  Overview 
•  Error control 
•  Flow control 
•  Congestion control 



Error control 

•  Mechanisms to detect and recover from lost packets 
•  Sequence numbers 

–  Used in acknowledgments 
–  Identify the packets that are acknowledged 

•  Positive acknowledgments (ARQ) 
•  Error detection 

–  Timers 
–  Checksums 

•  Error correction: retransmissions 



Cumulative Acknowledgments 

•  Acknowledge only the next expected packet in sequence 
–  E.g. received 1,2,3,4,6 -> ACK 5 

•  Advantages 
–  Single ACK for multiple packets 

•  Delayed ACKs scheme = one ACK for 2*MSS data 
–  Lost ACK does not necessarily trigger retransmission 

•  Drawback 
–  Cannot tell if lost only first or all of a train of packets 
–  => Selective ACK 



Selective Acknowledgments (SACK) 

•  RFC 2018 
•  Helps recovery when multiple packets are lost 
•  Receiver reports which segments were lost using TCP 

SACK (Selective Acknowledgment) options 
•  Sender can retransmit several packets per RTT  



Checksums 

•  For detecting damaged packets 
–  Compute at sender, check at receiver 

•  Computed from pseudo-header and transport segment 
–  Pseudo header includes 

•  source and destination IP addresses 
•  protocol number 
•  TCP/UDP length 
•  Slightly different method for IPv4 (RFC 768/793) and IPv6 (RFC 2460) 
•  Included for protection against misrouted segments 

–  Divide into 16-bit words and compute one’s complement of the one’s 
complement sum of all the words 



Retransmission timeout (RTO) 

•  RTO associated to each transmitted packet 
•  Retransmit packet if no ACK is received before RTO has 

elapsed 
•  Adjusting RTO (original algorithm): 

–  RTT = (α*oldRTT)+((1-α)*newRTTsample) (recommeded α=0,9) 
–  RTO: β*RTT, β>1 (recommended β=2) 

•  Problem? 
–  Does not take into account large variation in RTT 



Modified algorithm 

•  Take variation into account as explicit parameter 
•  Initialize: RTO = 3 
•  Two variables: SRTT (smoothed round-trip time) and 

RTTVAR (round-trip time variation) 
–  First measurement R: 

•  SRTT = R 
•  RTTVAR = R/2 

–  For subsequent measurement R: 
•  RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R| 
•  SRTT = (1 - alpha) * SRTT + alpha * R 
•  Use alpha=1/8, beta=1/4 

•  RTO = SRTT + 4*RTTVAR 
•  If computed RTO < 1s –> round it up to 1s 



Karn's algorithm 

•  Receiving ACK for retransmitted packet 
–  Is the ACK for original packet or 

retransmission?? 
–  No way to know... 
è Do not update RTO for retransmitted packets 

•  Timer backoff also needed 
–  At timeout: new_timeout = 2*timeout 

(exponential backoff) 
–  Otherwise, we might never get it right! 

•  TCP timestamps can also help 
disambiguate ACKs 
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Fast Retransmit 

•  Introduced by Van Jacobson 
1988 

•  Observation: TCP ACKs the 
next expected missing packet 

•  -> Duplicate ACKs indicate lost 
packet(s) 

•  Do not wait for timeout but 
retransmit after 3 duplicate 
ACKs 
–  Wait for reordered packets 
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Outline 

•  Overview 
•  Error control 
•  Flow control 
•  Congestion control 



Flow control 

•  Goal: do not overflow the receiving application 
•  Window based mechanism to limit transmission rate 
•  Receiver advertised window 

Application Application 

TCP TCP Network 

Sender Receiver 

buffers 



Sliding Window 

•  Multiple packets simultaneously ”in flight”, i.e. outstanding 
–  Improve efficiency 

•  Buffer sent unacked packets 

1 2 3 4 5 6 7 8 9 10 11 12 13 ... 

Sending window 

sent and 
acked sent but 

not acked 
unsent 



Receiver advertised window 

•  Receiver advertises the maximum window size the 
sender is allowed to use 

•  Enables receiver TCP to signal sending TCP to backoff 
–  Receiving application not consuming received data fast enough 

•  Value is included in each ACK 
–  Changes dynamically 
–  Depends on how application consumes buffer 



Silly Window Syndrome 

•  Problem in worst case: 
–  Receiver buffer between TCP and application fills up 
–  Receiving application read a single byte -> TCP 

advertises a receiver window of size one 
–  Sender transmits a single byte 

•  Lot of overhead due to packet headers 



Avoiding Silly Window Syndrome 

•  Window update only with significant size 
–  At least MSS worth of data or 
–  Half of its buffer 

•  Analogy at sender side 
–  Application gives small chunks of data to TCP -> send small 

packets 
–  Nagle’s algorithm: Delay sending data until have MSS worth of it 

•  Does not work for all applications, e.g. delay sensitive apps 
•  Need also mechanism to tell TCP to transmit immediately   -> Push 

flag 



Large Receiver Windows 

•  Receiver window hdr field size is 16 bits 
–  => max size is about 65KBytes 

•  Example: 10Mbit/s path from Europe to US west coast 
–  0.15s * 10^7/8 ≈ 190KBytes 
–  16 bits not enough to fill the pipe! 

•  Use Window Scaling option 
–  Both ends set a factor during handshake (SYN segments) 
–  Multiply window field value with this factor 

delay=RTT 

bandwidth 



Outline 

•  Overview 
•  Error control 
•  Flow control 
•  Congestion control 

–  Background and motivation 
–  Basic TCP congestion control 
–  Fairness 
–  Other TCP versions and recent developments 

•  Conclusions 



Why we need congestion control 

•  Flow control in TCP prevents overwhelming the receiving 
application 

•  Problem: Multiple senders (TCP (or UDP)) sharing a link can 
still overwhelm it 

Congestion collapse 
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TCP (with no congestion ctrl) makes 
things worse by: 

q  Retransmitting lost packets 
§  Further increases the load 

q  Spuriously retransmitting packets still 
in flight 
§  Unnecessary retransmissions lead to 

even more load! 
§  Like pouring gasoline on a fire 



Causes/costs of congestion: scenario 1  

•  two senders, two receivers 
•  one router, infinite buffers  
•  no retransmission 

•  large delays when 
congested 

•  maximum achievable 
throughput 

unlimited shared 
output link buffers 

Host A 
λin : original data 

Host B 

λout 



Causes/costs of congestion: scenario 2 

•  four senders 
•  multihop paths 
•  timeout/retransmit 

λ	

in 

Q: what happens as      
and      increase ? λ	


in 

finite shared output 
link buffers 

Host A 
λin : original data 

Host B 

λout 

λ'in : original data, plus 
retransmitted data 



Causes/costs of congestion: scenario 2  

another “cost” of congestion:  
❒  when packet dropped, any upstream transmission 

capacity used for that packet was wasted! 
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Approaches towards congestion control 

end-end congestion control: 
•  no explicit feedback from 

network 
•  congestion inferred from end-

system observed loss, delay 
•  approach taken by TCP 

network-assisted 
congestion control: 

•  routers provide feedback to 
end systems 
–  single bit indicating 

congestion (SNA, DECbit, 
TCP/IP ECN, ATM) 

–  explicit rate sender should 
send at 

two broad approaches towards congestion control: 



Explicit Congestion Notification (ECN) 

•  Routers flag packets upon congestion 
–  Active queue management 

•  Sender consequently adjusts sending rate 
•  Supported by routers but not widely used 

–  Fear of software bugs 
–  Running with default configurations 

•  Most OSs (Win7, Ubuntu, Fedora) ship with ECN 
disabled 
–  Tuning for bugs (e.g. popular Cisco PIX firewall) 



TCP Congestion control 

•  Principle: 
–  Continuously throttle TCP sender's transmission rate 
–  Probe the network by increasing the rate when all is fine 
–  Decrease rate when signs of congestion (e.g. packet loss) 

 
•  How? 

–  Introduce congestion window (cwnd): 
   #outstanding bytes = min(cwnd, rwnd) 

–  Adjust cwnd size to control the transmission rate 
•  Adjustment strategy depends on TCP version 

flow control 



Glimpse into the past 

ARPAnet 
TCP (Cerf et Kahn) RFC 793 

1981 1974 1969 1983 

TCP/IP 

Only flow control (receiver advertised window) 

-  Link LBL to UC Berkeley  
-  throughput dropped from 32 Kbps to 

40 bps  (factor of ~1000!) 

1986 

1st congestion 
collapse 
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TCP Tahoe 

•  1988 Van Jacobson 
•  The basis for TCP congestion control 
•  Lost packets are sign of congestion 

–  Detected with timeouts: no ACK received in time 
•  Two modes: 

–  Slow Start 
–  Congestion Avoidance 

•  New retransmission timeout (RTO) calculation 
–  Incorporates variance in RTT samples 
–  Timeout really means a lost packet (=congestion) 

•  Fast Retransmit 



Slow Start (SS) 

•  On each ACK for new data, 
increase cwnd by 1 packet 
–  Exponential increase in the size of 

cwnd 
–  Ramp up a new TCP connection fast 

(not slow!) 
•  Name means that you start slowly 

•  In two cases: 
–  Beginning of connection 
–  After a timeout 

Host A 

one segment 
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Host B 

time 

two segments 

four segments 



Congestion Avoidance (CA) 

•  Approach the rate limit of the network more 
conservatively 

•  Easy to drive the net into saturation but hard for the 
net to recover 

•  Increase cwnd by 1 for cwnd worth of ACKs (i.e. 
per RTT) 



Combining SS and CA 

•  Introduce Slow start threshold 
(ssthresh)  

•  On timeout: 
–  ssthresh = 0.5 x cwnd 
–  cwnd = 1 packet 

•  On new ACK: 
–  If cwnd < ssthresh: do Slow Start 
–  Else: do Congestion Avoidance 

❒  ACKs: increase cwnd by 
1 MSS per RTT: additive 
increase 

❒  loss: cut cwnd in half 
(non-timeout-detected 
loss): multiplicative 
decrease 

 

AIMD 

AIMD: Additive Increase 
Multiplicative Decrease 



TCP Tahoe: adjusting cwnd 
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Congestion avoidance 
after cwnd reaches 
half of previous cwnd 

Set ssthresh to 
half of cwnd 



TCP Reno 

•  Van Jacobson 1990 
•  Fast retransmit with Fast recovery 

–  Duplicate ACKs tell sender that packets still go through 
–  Do less aggressive back-off: 

•  ssthresh = 0.5 x cwnd 
•  cwnd = ssthresh + 3 packets 
•  Increment cwnd by one for each additional duplicate ACK 
•  When the next new ACK arrives: cwnd = ssthresh 

Nb of packets that 
were delivered 

Fast 
recovery 



TCP Reno: adjusting cwnd 
cwnd 

Slow Start  Congestion Avoidance 
Time 
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TCP Fairness 

fairness goal: if K TCP sessions share same bottleneck 
link of bandwidth R, each should have average rate of 
R/K 

TCP connection 1 

bottleneck 
router 
capacity R 

TCP  
connection 2 

Is TCP fair? 



Why is TCP fair? 
Two competing sessions: 
•  Additive increase gives slope of 1, as throughput increases 
•  multiplicative decrease decreases throughput proportionally  

R 
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equal bandwidth share 

Connection 1 throughput 
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congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 



TCP Fairness Issues (cont.) 

RTT Fairness 
•  What if two connections 

have different RTTs? 
–  “Faster” connection grabs 

larger share 
•  Reno’s (AIMD) fairness is 

RTT biased 

Fairness and parallel TCP 
connections 

•  nothing prevents app from 
opening parallel connections 
between 2 hosts. 

•  web browsers do this  
•  example: link of rate R 

supporting 9 connections;  
–  new app asks for 1 TCP, gets 

rate R/10 
–  new app asks for 11 TCPs, gets 

R/2 ! 



Fairness and UDP 

•  Multimedia apps sometimes use UDP instead of TCP 
–  Do not want rate throttled by congestion control 
–  Pump audio/video at constant rate, tolerate packet loss 
–  But vast majority of e.g. streaming traffic is TCP 



Other TCP versions 

•  Delay-based congestion control 
–  TCP Vegas 

•  Wireless networks 
–  Take into account random packet loss due to bit errors (not 

congestion!) 
–  E.g. TCP Veno 

•  Paths with high bandwidth*delay 
–  These “long fat pipes” require large cwnd to be saturated 
–  SS and CA provide too slow response 
–  TCP CUBIC 
–  Compound TCP (CTCP) 



TCP Vegas 

•  1994 by Brakmo et Peterson 
•  Issue: Tahoe and Reno RTO clock is very coarse grained 

–  “ticks” each 500ms 
•  Increasing delay is a sign of congestion 

–  Packets start to fill up queues 
–  Expected throughput = cwnd / BaseRTT 
–  Compare expected to actual throughput 
–  Adjust rate accordingly before packets are lost 

•  Also some modifications to Slow start and Fast Retransmit 
•  Potentially up to 70% better throughput than Reno 
•  Fairness with Reno? 

–  Reno grabs larger share due to late congestion detection 

minimum of all 
measured round trip 
times 



BIC, CUBIC, Compound TCP 

•  Both for paths with high (bandwidth * delay) 
–  These “long fat pipes” lead to large cwnd 
–  SS and CA provide too slow response 
–  Scale up to tens of Gb/s 

•  BIC TCP (2004) 
–  From academic research community 
–  No AIMD 
–  Window growth function is combination of binary search and linear 

increase 
•  CUBIC TCP (2005) 

–  Enhanced version of BIC 
–  Improves TCP friendliness & RTT fairness compared to BIC 

•  Compound TCP (2006) 
–  Microsoft research 
–  Tackles same problems as BIC/CUBIC 
–  Combines loss-based and delay-based approaches 



Deployment 

•  Windows 
–  Server 2008 uses Compound TCP (CTCP) by default 
–  Vista, 7, support CTCP, New Reno by default 

•  Can be enabled using Netsh command-line scripting utility 
–  Hotfix enabling CTCP available for server 2003 and 64-bit XP 

•  Linux 
–  TCP BIC default in kernels 2.6.8 through 2.6.18 
–  TCP CUBIC since 2.6.19 



Conclusions 
•  Transport layer 

–  End-to-end transport of data for applications 
–  Application multiplexing through port numbers 
–  Reliable (TCP) vs. unreliable (UDP) 

•  UDP 
–  Unreliable, no state 
–  Optionally integrity checking 

•  TCP 
–  Connection management 
–  Error control: deal with unreliable network path 
–  Flow control: Prevent overwhelming receiving application 
–  Congestion control: Prevent overwhelming the network 

•  Loss-based and delay-based congestion detection 
•  More and less aggressive rate control 
•  Suitable for different network types 
•  Fairness is important 
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