
• 23.9.2010

T-110.4100 Tietokoneverkot
TCP

28.02.2012
Matti Siekkinen

Outline

•  Transport layer
–  Role and main functionality
–  TCP and UDP

•  TCP
–  Basics
–  Error control
–  Flow control
–  Congestion control

Transport layer

Physical

Link

Network

Transport

Application

Physical

Link

Network

Transport

Application

Internet

TCP, UDP…

Transport layer (cont.)

•  Offers end-to-end transport of data for applications
•  Different characteristics

–  Reliable vs. unreliable
–  Forward error correction (FEC) vs. Automatic Repeat-reQuest

(ARQ)
–  TCP friendly or not
–  Structured vs. unstructured stream
–  …

Reliable vs. best effort service

•  Reliable transport
–  Guarantees ordered delivery of packets
–  Important for e.g.

•  Signaling messages
•  File transfer

–  TCP

•  Best effort transport
–  No guarantees of packet delivery
–  Non-critical data delivery, e.g. VoIP
–  UDP

Encapsulation

Ethernet CRC

IP

TCP

appl. data = payload

packet

segment

frame

headers

Role of ports

•  Well-known port numbers
–  RFC 2780 (&4443)
–  0-1023

•  Registered port numbers
–  1024-49151

•  Other port numbers
–  49152-65535

DNS IRC xyz

Transport (TCP/UDP)

6667 53 65000

Applications

IP

Transport Layer Protocols

•  UDP
–  Lightweight protocol

•  Just port numbering for application multiplexing and integrity
checking (checksums) to IP

•  No segmentation
–  Unreliable connectionless transport service

•  No acknowledgments and no retransmissions
•  Checksum optional in IPv4 and mandatory in IPv6

•  TCP
–  Reliable service
–  Our focus for the rest of the lecture…

• 8

TCP: Outline

•  Overview
–  Largely familiar stuff from T-110.2100

•  Error control
•  Flow control
•  Congestion control

TCP properties

•  End-to-end
•  Connection oriented

–  State maintained at both ends
–  Identified by a four-tuple

•  Formed by the two end point’s IP address and TCP port number

•  Reliable
–  Try to guarantee in order delivery of each packet
–  Buffered transfer

•  Full Duplex
–  Data transfer simultaneously in both directions

TCP properties

•  Three main functionalities for active connection

Application Application

TCP TCP Network

Sender Receiver

buffers

1.  Error control
§  Deal with the best effort unreliable network

2.  Flow control
§  Do not overload the receiving application

3.  Congestion control
§  Do not overload the network itself

TCP-header (RFC 793)
 0 10 20 31
+-+
| Source port | Destination port |
+-+
| Sequence number |
+-+
| Acknowledgment number |
+-+
hdr		U	A	P	R	S	F	
length	Varattu	R	C	S	S	Y	I	Advertized receiver window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent-pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

TCP options

•  3 = window scaling
•  8,10 = Timestamp and echo of previous timestamp

–  Improve accuracy of RTT computation
–  Protect against wrapped sequence numbers

•  2 = Maximum Segment Size (MSS)
–  Negotiated while establishing connection
–  Try to avoid fragmentation

•  1 = No-operation
–  Sometimes between options, align option fields

•  0 = End of options

Connection establishment

•  Three-way handshake

<SEQ=100><SYN>

<SEQ=300><ACK=101><SYN><ACK>

<SEQ=101><ACK=301><ACK>

<SEQ=101><ACK=301><ACK><DATA>

Third packet may contain data:

• do what
• I mean

Terminating connection

•  Modified three-way handshake
•  If other end has no more data to send, can be

terminated one way:
–  Send a packet with FIN flag set
–  Recipient acks the FIN packet

•  After done with the data transfer to the other direction
–  FIN packet and ack to the inverse direction

TCP Outline

•  Overview
•  Error control
•  Flow control
•  Congestion control

Error control

•  Mechanisms to detect and recover from lost packets
•  Sequence numbers

–  Used in acknowledgments
–  Identify the packets that are acknowledged

•  Positive acknowledgments (ARQ)
•  Error detection

–  Timers
–  Checksums

•  Error correction: retransmissions

Cumulative Acknowledgments

•  Acknowledge only the next expected packet in sequence
–  E.g. received 1,2,3,4,6 -> ACK 5

•  Advantages
–  Single ACK for multiple packets

•  Delayed ACKs scheme = one ACK for 2*MSS data
–  Lost ACK does not necessarily trigger retransmission

•  Drawback
–  Cannot tell if lost only first or all of a train of packets
–  => Selective ACK

Selective Acknowledgments (SACK)

•  RFC 2018
•  Helps recovery when multiple packets are lost
•  Receiver reports which segments were lost using TCP

SACK (Selective Acknowledgment) options
•  Sender can retransmit several packets per RTT

Checksums

•  For detecting damaged packets
–  Compute at sender, check at receiver

•  Computed from pseudo-header and transport segment
–  Pseudo header includes

•  source and destination IP addresses
•  protocol number
•  TCP/UDP length
•  Slightly different method for IPv4 (RFC 768/793) and IPv6 (RFC 2460)
•  Included for protection against misrouted segments

–  Divide into 16-bit words and compute one’s complement of the one’s
complement sum of all the words

Retransmission timeout (RTO)

•  RTO associated to each transmitted packet
•  Retransmit packet if no ACK is received before RTO has

elapsed
•  Adjusting RTO (original algorithm):

–  RTT = (α*oldRTT)+((1-α)*newRTTsample) (recommeded α=0,9)
–  RTO: β*RTT, β>1 (recommended β=2)

•  Problem?
–  Does not take into account large variation in RTT

Modified algorithm

•  Take variation into account as explicit parameter
•  Initialize: RTO = 3
•  Two variables: SRTT (smoothed round-trip time) and

RTTVAR (round-trip time variation)
–  First measurement R:

•  SRTT = R
•  RTTVAR = R/2

–  For subsequent measurement R:
•  RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R|
•  SRTT = (1 - alpha) * SRTT + alpha * R
•  Use alpha=1/8, beta=1/4

•  RTO = SRTT + 4*RTTVAR
•  If computed RTO < 1s –> round it up to 1s

Karn's algorithm

•  Receiving ACK for retransmitted packet
–  Is the ACK for original packet or

retransmission??
–  No way to know...
è Do not update RTO for retransmitted packets

•  Timer backoff also needed
–  At timeout: new_timeout = 2*timeout

(exponential backoff)
–  Otherwise, we might never get it right!

•  TCP timestamps can also help
disambiguate ACKs

Host A

Seq=100,20B data,ts={x,y}

time

premature timeout

Host B

Seq=92,8B data,ts={x,w}

Seq=92,8B data,ts={x,t}

Se
q=

92
 ti

m
eo

ut

Se
q=

92
 ti

m
eo

ut

Host A

Seq=100, 20B data

time

premature timeout

Host B

Seq=92, 8B data

Seq=92, 8B data

Se
q=

92
 ti

m
eo

ut

Se
q=

92
 ti

m
eo

ut

New RTT
sample?

Fast Retransmit

•  Introduced by Van Jacobson
1988

•  Observation: TCP ACKs the
next expected missing packet

•  -> Duplicate ACKs indicate lost
packet(s)

•  Do not wait for timeout but
retransmit after 3 duplicate
ACKs
–  Wait for reordered packets

Host A

tim
eo

ut

Host B

time

X

resend seq X2

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs

Outline

•  Overview
•  Error control
•  Flow control
•  Congestion control

Flow control

•  Goal: do not overflow the receiving application
•  Window based mechanism to limit transmission rate
•  Receiver advertised window

Application Application

TCP TCP Network

Sender Receiver

buffers

Sliding Window

•  Multiple packets simultaneously ”in flight”, i.e. outstanding
–  Improve efficiency

•  Buffer sent unacked packets

1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Sending window

sent and
acked sent but

not acked
unsent

Receiver advertised window

•  Receiver advertises the maximum window size the
sender is allowed to use

•  Enables receiver TCP to signal sending TCP to backoff
–  Receiving application not consuming received data fast enough

•  Value is included in each ACK
–  Changes dynamically
–  Depends on how application consumes buffer

Silly Window Syndrome

•  Problem in worst case:
–  Receiver buffer between TCP and application fills up
–  Receiving application read a single byte -> TCP

advertises a receiver window of size one
–  Sender transmits a single byte

•  Lot of overhead due to packet headers

Avoiding Silly Window Syndrome

•  Window update only with significant size
–  At least MSS worth of data or
–  Half of its buffer

•  Analogy at sender side
–  Application gives small chunks of data to TCP -> send small

packets
–  Nagle’s algorithm: Delay sending data until have MSS worth of it

•  Does not work for all applications, e.g. delay sensitive apps
•  Need also mechanism to tell TCP to transmit immediately -> Push

flag

Large Receiver Windows

•  Receiver window hdr field size is 16 bits
–  => max size is about 65KBytes

•  Example: 10Mbit/s path from Europe to US west coast
–  0.15s * 10^7/8 ≈ 190KBytes
–  16 bits not enough to fill the pipe!

•  Use Window Scaling option
–  Both ends set a factor during handshake (SYN segments)
–  Multiply window field value with this factor

delay=RTT

bandwidth

Outline

•  Overview
•  Error control
•  Flow control
•  Congestion control

–  Background and motivation
–  Basic TCP congestion control
–  Fairness
–  Other TCP versions and recent developments

•  Conclusions

Why we need congestion control

•  Flow control in TCP prevents overwhelming the receiving
application

•  Problem: Multiple senders (TCP (or UDP)) sharing a link can
still overwhelm it

Congestion collapse

th
ro

ug
hp

ut

load

packet losses

de
la

y

TCP (with no congestion ctrl) makes
things worse by:

q  Retransmitting lost packets
§  Further increases the load

q  Spuriously retransmitting packets still
in flight
§  Unnecessary retransmissions lead to

even more load!
§  Like pouring gasoline on a fire

Causes/costs of congestion: scenario 1

•  two senders, two receivers
•  one router, infinite buffers
•  no retransmission

•  large delays when
congested

•  maximum achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Causes/costs of congestion: scenario 2

•  four senders
•  multihop paths
•  timeout/retransmit

λ	

in

Q: what happens as
and increase ? λ	

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2

another “cost” of congestion:
❒  when packet dropped, any upstream transmission

capacity used for that packet was wasted!

H
o
st
A

H
o
st
B

λ
o
u
t

Approaches towards congestion control

end-end congestion control:
•  no explicit feedback from

network
•  congestion inferred from end-

system observed loss, delay
•  approach taken by TCP

network-assisted
congestion control:

•  routers provide feedback to
end systems
–  single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

–  explicit rate sender should
send at

two broad approaches towards congestion control:

Explicit Congestion Notification (ECN)

•  Routers flag packets upon congestion
–  Active queue management

•  Sender consequently adjusts sending rate
•  Supported by routers but not widely used

–  Fear of software bugs
–  Running with default configurations

•  Most OSs (Win7, Ubuntu, Fedora) ship with ECN
disabled
–  Tuning for bugs (e.g. popular Cisco PIX firewall)

TCP Congestion control

•  Principle:
–  Continuously throttle TCP sender's transmission rate
–  Probe the network by increasing the rate when all is fine
–  Decrease rate when signs of congestion (e.g. packet loss)

•  How?

–  Introduce congestion window (cwnd):
 #outstanding bytes = min(cwnd, rwnd)

–  Adjust cwnd size to control the transmission rate
•  Adjustment strategy depends on TCP version

flow control

Glimpse into the past

ARPAnet
TCP (Cerf et Kahn) RFC 793

1981 1974 1969 1983

TCP/IP

Only flow control (receiver advertised window)

-  Link LBL to UC Berkeley
-  throughput dropped from 32 Kbps to

40 bps (factor of ~1000!)

1986

1st congestion
collapse

Main differences lie
in congestion control
mechanisms

CTCP

1988

TCP Tahoe

Congestion control included

1990

TCP Reno

1994 1999

- TCP Vegas -
ECN

TCP New
Reno

1996

SAC
K

-04 -05

CUBIC

- FAST TCP
- BIC

-06

TCP Tahoe

•  1988 Van Jacobson
•  The basis for TCP congestion control
•  Lost packets are sign of congestion

–  Detected with timeouts: no ACK received in time
•  Two modes:

–  Slow Start
–  Congestion Avoidance

•  New retransmission timeout (RTO) calculation
–  Incorporates variance in RTT samples
–  Timeout really means a lost packet (=congestion)

•  Fast Retransmit

Slow Start (SS)

•  On each ACK for new data,
increase cwnd by 1 packet
–  Exponential increase in the size of

cwnd
–  Ramp up a new TCP connection fast

(not slow!)
•  Name means that you start slowly

•  In two cases:
–  Beginning of connection
–  After a timeout

Host A

one segment

R
TT

Host B

time

two segments

four segments

Congestion Avoidance (CA)

•  Approach the rate limit of the network more
conservatively

•  Easy to drive the net into saturation but hard for the
net to recover

•  Increase cwnd by 1 for cwnd worth of ACKs (i.e.
per RTT)

Combining SS and CA

•  Introduce Slow start threshold
(ssthresh)

•  On timeout:
–  ssthresh = 0.5 x cwnd
–  cwnd = 1 packet

•  On new ACK:
–  If cwnd < ssthresh: do Slow Start
–  Else: do Congestion Avoidance

❒  ACKs: increase cwnd by
1 MSS per RTT: additive
increase

❒  loss: cut cwnd in half
(non-timeout-detected
loss): multiplicative
decrease

AIMD

AIMD: Additive Increase
Multiplicative Decrease

TCP Tahoe: adjusting cwnd

Timeouts

Slow Start

t

cw
nd

Congestion avoidance
after cwnd reaches
half of previous cwnd

Set ssthresh to
half of cwnd

TCP Reno

•  Van Jacobson 1990
•  Fast retransmit with Fast recovery

–  Duplicate ACKs tell sender that packets still go through
–  Do less aggressive back-off:

•  ssthresh = 0.5 x cwnd
•  cwnd = ssthresh + 3 packets
•  Increment cwnd by one for each additional duplicate ACK
•  When the next new ACK arrives: cwnd = ssthresh

Nb of packets that
were delivered

Fast
recovery

TCP Reno: adjusting cwnd
cwnd

Slow Start Congestion Avoidance
Time

“inflating” cwnd with dupACKs

“deflating” cwnd with a new ACK

(ini$al)	 ssthresh	

new	 ACK	 	

fast-‐retransmit	
fast-‐retransmit	

new	 ACK	 	

$meout	

ssthresh

ssthresh

TCP Tahoe

TCP Reno

Transmission round

c
w
n
d

w
in

do
w

 s
iz

e
(in

se

gm
en

ts
)

Tahoe vs. Reno

slow
start

congestion
avoidance

fast
recovery

cwnd > ssthresh

loss:
timeout

loss:
timeout

new ACK loss:
3dupACK

loss:
3dupACK

loss:
timeout

Reno’s Congestion control FSM

TCP Fairness

fairness goal: if K TCP sessions share same bottleneck
link of bandwidth R, each should have average rate of
R/K

TCP connection 1

bottleneck
router
capacity R

TCP
connection 2

Is TCP fair?

Why is TCP fair?
Two competing sessions:
•  Additive increase gives slope of 1, as throughput increases
•  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase

loss: decrease window by factor of 2

TCP Fairness Issues (cont.)

RTT Fairness
•  What if two connections

have different RTTs?
–  “Faster” connection grabs

larger share
•  Reno’s (AIMD) fairness is

RTT biased

Fairness and parallel TCP
connections

•  nothing prevents app from
opening parallel connections
between 2 hosts.

•  web browsers do this
•  example: link of rate R

supporting 9 connections;
–  new app asks for 1 TCP, gets

rate R/10
–  new app asks for 11 TCPs, gets

R/2 !

Fairness and UDP

•  Multimedia apps sometimes use UDP instead of TCP
–  Do not want rate throttled by congestion control
–  Pump audio/video at constant rate, tolerate packet loss
–  But vast majority of e.g. streaming traffic is TCP

Other TCP versions

•  Delay-based congestion control
–  TCP Vegas

•  Wireless networks
–  Take into account random packet loss due to bit errors (not

congestion!)
–  E.g. TCP Veno

•  Paths with high bandwidth*delay
–  These “long fat pipes” require large cwnd to be saturated
–  SS and CA provide too slow response
–  TCP CUBIC
–  Compound TCP (CTCP)

TCP Vegas

•  1994 by Brakmo et Peterson
•  Issue: Tahoe and Reno RTO clock is very coarse grained

–  “ticks” each 500ms
•  Increasing delay is a sign of congestion

–  Packets start to fill up queues
–  Expected throughput = cwnd / BaseRTT
–  Compare expected to actual throughput
–  Adjust rate accordingly before packets are lost

•  Also some modifications to Slow start and Fast Retransmit
•  Potentially up to 70% better throughput than Reno
•  Fairness with Reno?

–  Reno grabs larger share due to late congestion detection

minimum of all
measured round trip
times

BIC, CUBIC, Compound TCP

•  Both for paths with high (bandwidth * delay)
–  These “long fat pipes” lead to large cwnd
–  SS and CA provide too slow response
–  Scale up to tens of Gb/s

•  BIC TCP (2004)
–  From academic research community
–  No AIMD
–  Window growth function is combination of binary search and linear

increase
•  CUBIC TCP (2005)

–  Enhanced version of BIC
–  Improves TCP friendliness & RTT fairness compared to BIC

•  Compound TCP (2006)
–  Microsoft research
–  Tackles same problems as BIC/CUBIC
–  Combines loss-based and delay-based approaches

Deployment

•  Windows
–  Server 2008 uses Compound TCP (CTCP) by default
–  Vista, 7, support CTCP, New Reno by default

•  Can be enabled using Netsh command-line scripting utility
–  Hotfix enabling CTCP available for server 2003 and 64-bit XP

•  Linux
–  TCP BIC default in kernels 2.6.8 through 2.6.18
–  TCP CUBIC since 2.6.19

Conclusions
•  Transport layer

–  End-to-end transport of data for applications
–  Application multiplexing through port numbers
–  Reliable (TCP) vs. unreliable (UDP)

•  UDP
–  Unreliable, no state
–  Optionally integrity checking

•  TCP
–  Connection management
–  Error control: deal with unreliable network path
–  Flow control: Prevent overwhelming receiving application
–  Congestion control: Prevent overwhelming the network

•  Loss-based and delay-based congestion detection
•  More and less aggressive rate control
•  Suitable for different network types
•  Fairness is important

References

[1] IETF’s RFC page: http://www.ietf.org/rfc.html
[2] V. Jacobson: Congestion Avoidance and Control. In proceedings of

SIGCOMM '88.
[3] L. Brakmo et al.: TCP Vegas: New techniques for congestion detection

and avoidance. In Proceedings of SIGCOMM '94.
[4] RFC2582/RFC3782 - The NewReno Modification to TCP's Fast

Recovery Algorithm.
[5] L. Hu et al.: Binary Increase Congestion Control for Fast, Long

Distance Networks, IEEE Infocom, 2004.
[6] S. Ha et al.: CUBIC: A New TCP-Friendly High-Speed TCP Variant,

ACM SIGOPS, 2008.
[7] K. Tan et al.: Compound TCP: A Scalable and TCP-friendly Congestion

Control for High-speed Networks, In IEEE Infocom, 2006.
[8] W. John et al.: Trends and Differences in Connection Behavior within

Classes of Internet Backbone Traffic, In PAM 2008.
[9] A. Medina et al.: Measuring the evolution of transport protocols in the

internet, SIGCOMM CCR, 2005.

