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Goals and Requirements
● Need to exchange information between 

two or more devices  need for a protocol
– The usage scenarios are mapped to protocol 

engineering goals and requirements

● Can't have everything, goals can conflict 
with each other:
– Reliable vs. fast
– Extensible vs. simple

● Do not overlook economics: money, time 
and people set the limits for goals and 
requirements



  

Protocol Success Factors

● Scalability: from 100 users to 1 million
● Flexibility: application to new use cases
● Incremental deployment
● Does it meet a real (user) need?
● Cost savings
● Zero configuration
● Market (un)certainty

– Uncertain: modularity & flexibility
– Certain: fixed & efficient



  

Design and Specification

● Three technical aspects:
– Host processing: protocol states, transitions, 

retransmissions, ordering of packets

– What goes on wire: serialization, formatting, framing 
and fragmentation, messages, round trips

– Deployment: wireless networks, mobile devices, 
sensors, firewalls, NATs, etc

● Remember:
– Design it as simple as you can, but not simpler..

– Reuse/extend existing design or protocol if possible



  

Design Criteria for Protocols

● Extensibility
● Reliability
● Scalability
● Availability
● Ordered delivery
● Congestion control
● Error correction
● Error recovery

● Stateless
● Zero configuration
● User centric
● Mobile networking
● Energy efficiency
● Security
● Privacy
● Anonymity



  

Fault Tolerance

● Failures types
– Network malfunction
– Software or device crashes and reboots

● How to achieve?
– Retransmission, redundancy
– Session resumption
– Proper protocol and software error handling
– Test engineering



  

Scalability

● Can the protocol endure a drastic increase in 
the number of users?

● State explosion

– Especially at middleboxes (e.g. routers)
● Computational overhead and complexity

– Small devices with limited CPU and batteries
● Decentralization (distributed protocols)

– Load balancing (server redundancy)
● Caching for optimized performance

● Testing with network simulators (e.g. NS3)



  

Protocol Compatibility

● Protocol specifications define on-wire formats

– Sometimes include implementation issues
● Backwards incompatible extensions introduced

– Bump protocol version from v1 to v2
● Mandatory and optional protocol parameters

– Optional parameters for backwards compatibility
● Extension compatibility

– Do all of the N extensions work together?



  

Interoperability

● Interoperability tests verify compatibility of two 
different implementations

● Multiple implementations from different 
vendors or organizations

– Are the implementations compatible?

– Is the specification strict enough?
● Be conservative in sending and liberal in 

receiving

– Backwards & forwards compatibility



  

Network Environments
● Single-hop vs. multi-hop

● Access Media (wired vs. wireless)

● LAN, WAN

● Trusted vs. untrusted networks

● NATted/IPv4 vs. IPv6 networks

● Infrastructure: name servers, middleboxes
● Device mobility, network mobility

● Multihoming, multiaccess, multipath

● Delay tolerant networking (e.g. email)



  

Protocol Models
● Architectural models

– Centralized vs. distributed service

– Client-server vs. peer-to-peer

– Cloud computing

● Communication models

– Unicast, anycast, broadcast, multicast

– Point-to-point vs. end-to-end

– End-to-end vs. end-to-middle

– Internet routing vs. overlay routing

– Asynchronous vs. synchronous

– Byte transfer vs. publish-subscribe



  

Layering
● Abstract and isolate different protocol 

functionality on different layers of the stack

– A layer should be replaceable with another
● Application layer: more intelligent decisions, 

easier to implement, easier to deploy

– Application frameworks and middleware
● Lower layers: generic purpose “service” to 

application layer => software reuse

● Strict vs. loose layering (cross-layer interaction)



  

Addressing and Naming

● Human readable
– Hostnames, FQDN, URIs

– Subject to internationalization issues

● Machine readable
– Operator or device manufacturer assigned (IP 

address, MAC addresses)

– Self-assigned addresses (ad-hoc networks)

– Cryptographic names (PGP, ssh, HIP)



  

States and Transitions

● State machine models different phases of 
communication

– Example: handshake, communications, connection 
maintenance and tear down

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and state 
does not expire

– Soft state: needs to refreshed, otherwise expires



  

Packet Flow Diagrams

● Illustrate the protocol to the reader of the 
protocol specification

● Examples of packet flows between two or 
more hosts

● Illustrates also the flow of time



  

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● PDU, framing, fragmentation, MTU
● Text encoding (appl. layer protocols)

– Xml, html, sip

– Easier to debug for humans

– Lines usually separated by newlines

– Character set (internationalization) issues

– Bandwidth inefficient (compression could be 
used)



  

Protocol Encoding 2/2

● Binary formats
– Integers in big-endian format

– Padding for alignment

– Bandwidth efficient

– Example protocols: IPv4, IPv6, TCP

– Example formats: XDR, ASN.1, BER, TLV

● Typically binary formats are visualized in 
“box notation” for engineers in protocol 
specifications



  

Security 1/5

● Better to embed in the design from day 
one
– Security difficult to add afterwards to deployed 

protocols

– Privacy even more difficult to add afterwards

– We don't need security – think again!

● Attack pattern
– Scan, intrude, exploit, abuse, cover tracks

● Protection pattern
– Prevent, detect, contain



  

Security 2/5

● Internal vs. external threat

– Attacker within company or outside

– Local software (e.g. trojan) vs. remote attack
● Active (modify packets) and passive (read 

packets) attacks

● Man-in-the-middle
● Blind attack

● Reflection, amplification, flooding

● DoS vs. DDos attack



  

Security 3/5

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!

● Countermeasures against attacks for availability 
(resource depletion, exhaustion, DoS/DDoS):

– Rate limitation

– Intermediaries (firewalls, network intrusion detection)

– Capthas, computational puzzles



  

Security 4/5

● Opportunistic security vs. infrastructure

– Leap of faith/time or huge deployment cost?

● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the user know that the connection is 
secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting



  

Security 5/5

● Do not hard-code crypto algorithms into the 
protocol!

– Crypto algorithms are safe only until a flaw is found

– Key sizes get deprecated due to faster machines 

● Murphy's law: everything that can go wrong, will go 
wrong

– Hackers will find and abuse holes in the design and 
implementations

– The overall strength of the system is as strong as its 
weakest link!



  

Protocol Correctness
● Verify that the protocol works

– Implement your own specification!

– Review from other people

– Simulation or emulation

– Mathematical analysis

– Security analysis

– Scalability

– Performance analysis

● Ready for deployment?

– More difficult to fix already deployed software

– Future compatibility



  

Deployment Obstacles

● Middlebox traversal

– Does the protocol go through NATs, routers, proxies and 
firewalls?

● Network Address Translators (NATs)

– Naming of hosts becomes more difficult

– NATs make protocol engineering difficult

– By default, NATs block new incoming connections

– Penetration by manual pinholing, ICE or Teredo

– NATs support only TCP and UDP (and maybe IPsec)

– Old NAT devices have different NAT algorithms



  

Standardization

● Why?

– Even wizards make errors; more reviewers, less errors

– Customer demands?

– Drawback: standardization takes time

● Few standards organizations

– W3C: Web standardization

– IETF: Applications, routing, transport,  IPv4/IPv6, security

– IEEE: Electricity (ethernet, wlan), POSIX, ..

– ITU-T, ETSI, 3GPP: Cellular technology
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