

On Protocol Design

T-110.4100 Computer Networks
13.10.2010

Miika Komu <miika@iki.fi>
Data Communications Software

CSE / Aalto University

mailto:miika@iki.fi

Table of Contents

● Goals & requirements

● Design & specs

● Protocol properties

● Failure tolerance

● Scalability

● Compatibility

● Interoperability

● N/w Environments

● Protocol models

● Layering

● Addressing & Naming

● State & Transitions

● Packet Flow Diagrams

● Protocol Encoding

● Security

● Correctness

● Deployment

● Standardization

Goals and Requirements
● Need to exchange information between

two or more devices  need for a protocol
– The usage scenarios are mapped to protocol

engineering goals and requirements

● Can't have everything, goals can conflict
with each other:
– Reliable vs. fast
– Extensible vs. simple

● Do not overlook economics: money, time
and people set the limits for goals and
requirements

Protocol Success Factors

● Scalability: from 100 users to 1 million
● Flexibility: application to new use cases
● Incremental deployment
● Does it meet a real (user) need?
● Cost savings
● Zero configuration
● Market (un)certainty

– Uncertain: modularity & flexibility
– Certain: fixed & efficient

Design and Specification

● Three technical aspects:
– Host processing: protocol states, transitions,

retransmissions, ordering of packets

– What goes on wire: serialization, formatting, framing
and fragmentation, messages, round trips

– Deployment: wireless networks, mobile devices,
sensors, firewalls, NATs, etc

● Remember:
– Design it as simple as you can, but not simpler..

– Reuse/extend existing design or protocol if possible

Design Criteria for Protocols

● Extensibility
● Reliability
● Scalability
● Availability
● Ordered delivery
● Congestion control
● Error correction
● Error recovery

● Stateless
● Zero configuration
● User centric
● Mobile networking
● Energy efficiency
● Security
● Privacy
● Anonymity

Fault Tolerance

● Failures types
– Network malfunction
– Software or device crashes and reboots

● How to achieve?
– Retransmission, redundancy
– Session resumption
– Proper protocol and software error handling
– Test engineering

Scalability

● Can the protocol endure a drastic increase in
the number of users?

● State explosion

– Especially at middleboxes (e.g. routers)
● Computational overhead and complexity

– Small devices with limited CPU and batteries
● Decentralization (distributed protocols)

– Load balancing (server redundancy)
● Caching for optimized performance

● Testing with network simulators (e.g. NS3)

Protocol Compatibility

● Protocol specifications define on-wire formats

– Sometimes include implementation issues
● Backwards incompatible extensions introduced

– Bump protocol version from v1 to v2
● Mandatory and optional protocol parameters

– Optional parameters for backwards compatibility
● Extension compatibility

– Do all of the N extensions work together?

Interoperability

● Interoperability tests verify compatibility of two
different implementations

● Multiple implementations from different
vendors or organizations

– Are the implementations compatible?

– Is the specification strict enough?
● Be conservative in sending and liberal in

receiving

– Backwards & forwards compatibility

Network Environments
● Single-hop vs. multi-hop

● Access Media (wired vs. wireless)

● LAN, WAN

● Trusted vs. untrusted networks

● NATted/IPv4 vs. IPv6 networks

● Infrastructure: name servers, middleboxes
● Device mobility, network mobility

● Multihoming, multiaccess, multipath

● Delay tolerant networking (e.g. email)

Protocol Models
● Architectural models

– Centralized vs. distributed service

– Client-server vs. peer-to-peer

– Cloud computing

● Communication models

– Unicast, anycast, broadcast, multicast

– Point-to-point vs. end-to-end

– End-to-end vs. end-to-middle

– Internet routing vs. overlay routing

– Asynchronous vs. synchronous

– Byte transfer vs. publish-subscribe

Layering
● Abstract and isolate different protocol

functionality on different layers of the stack

– A layer should be replaceable with another
● Application layer: more intelligent decisions,

easier to implement, easier to deploy

– Application frameworks and middleware
● Lower layers: generic purpose “service” to

application layer => software reuse

● Strict vs. loose layering (cross-layer interaction)

Addressing and Naming

● Human readable
– Hostnames, FQDN, URIs

– Subject to internationalization issues

● Machine readable
– Operator or device manufacturer assigned (IP

address, MAC addresses)

– Self-assigned addresses (ad-hoc networks)

– Cryptographic names (PGP, ssh, HIP)

States and Transitions

● State machine models different phases of
communication

– Example: handshake, communications, connection
maintenance and tear down

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and state
does not expire

– Soft state: needs to refreshed, otherwise expires

Packet Flow Diagrams

● Illustrate the protocol to the reader of the
protocol specification

● Examples of packet flows between two or
more hosts

● Illustrates also the flow of time

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● PDU, framing, fragmentation, MTU
● Text encoding (appl. layer protocols)

– Xml, html, sip

– Easier to debug for humans

– Lines usually separated by newlines

– Character set (internationalization) issues

– Bandwidth inefficient (compression could be
used)

Protocol Encoding 2/2

● Binary formats
– Integers in big-endian format

– Padding for alignment

– Bandwidth efficient

– Example protocols: IPv4, IPv6, TCP

– Example formats: XDR, ASN.1, BER, TLV

● Typically binary formats are visualized in
“box notation” for engineers in protocol
specifications

Security 1/5

● Better to embed in the design from day
one
– Security difficult to add afterwards to deployed

protocols

– Privacy even more difficult to add afterwards

– We don't need security – think again!

● Attack pattern
– Scan, intrude, exploit, abuse, cover tracks

● Protection pattern
– Prevent, detect, contain

Security 2/5

● Internal vs. external threat

– Attacker within company or outside

– Local software (e.g. trojan) vs. remote attack
● Active (modify packets) and passive (read

packets) attacks

● Man-in-the-middle
● Blind attack

● Reflection, amplification, flooding

● DoS vs. DDos attack

Security 3/5

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!

● Countermeasures against attacks for availability
(resource depletion, exhaustion, DoS/DDoS):

– Rate limitation

– Intermediaries (firewalls, network intrusion detection)

– Capthas, computational puzzles

Security 4/5

● Opportunistic security vs. infrastructure

– Leap of faith/time or huge deployment cost?

● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the user know that the connection is
secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting

Security 5/5

● Do not hard-code crypto algorithms into the
protocol!

– Crypto algorithms are safe only until a flaw is found

– Key sizes get deprecated due to faster machines

● Murphy's law: everything that can go wrong, will go
wrong

– Hackers will find and abuse holes in the design and
implementations

– The overall strength of the system is as strong as its
weakest link!

Protocol Correctness
● Verify that the protocol works

– Implement your own specification!

– Review from other people

– Simulation or emulation

– Mathematical analysis

– Security analysis

– Scalability

– Performance analysis

● Ready for deployment?

– More difficult to fix already deployed software

– Future compatibility

Deployment Obstacles

● Middlebox traversal

– Does the protocol go through NATs, routers, proxies and
firewalls?

● Network Address Translators (NATs)

– Naming of hosts becomes more difficult

– NATs make protocol engineering difficult

– By default, NATs block new incoming connections

– Penetration by manual pinholing, ICE or Teredo

– NATs support only TCP and UDP (and maybe IPsec)

– Old NAT devices have different NAT algorithms

Standardization

● Why?

– Even wizards make errors; more reviewers, less errors

– Customer demands?

– Drawback: standardization takes time

● Few standards organizations

– W3C: Web standardization

– IETF: Applications, routing, transport, IPv4/IPv6, security

– IEEE: Electricity (ethernet, wlan), POSIX, ..

– ITU-T, ETSI, 3GPP: Cellular technology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

