
User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)

Matti Siekkinen

28.09.2010

Some material from “Computer Networking: A Top Down Approach” by Jim Kurose, Keith Ross. September 28, 10

Outline

! Background
! UDP

"  Role and Functioning
! TCP

"  Basics
"  Error control
"  Flow control
"  Congestion control

September 28, 10

Transport layer

Physical

Link

Network

Transport

Application

Physical

Link

Network

Transport

Application

Internet

TCP, UDP…

September 28, 10

Transport layer (cont.)

! Offers end-to-end transport of data for
applications

! Different characteristics
"  Reliable vs. unreliable
"  Forward error correction (FEC) vs. Automatic Repeat-

reQuest (ARQ)
"  TCP friendly or not
"  Structured vs. unstructured stream
"  …

September 28, 10

Reliable vs. best effort

! TCP – reliable transport
"  Guarantees ordered delivery of packets
"  Important for e.g.

o  Signaling messages
o  File transfer

! UDP – best effort transport
"  No guarantees of packet delivery
"  Non-critical data delivery, e.g. VoIP

September 28, 10

Encapsulation

do what
I mean

Ethernet CRC

IP

TCP

appl. data = payload

packet

segment

frame

headers

September 28, 10

Role of ports

! Well-known port
numbers
"  RFC 2780 (&4443)
"  0-1023

! Registered port
numbers
"  1024-49151

! Other port numbers
"  49152-65535

DNS IRC xyz

Transport (TCP/UDP)

6667 53 65000

Applications

IP

September 28, 10

Checksums

! For detecting damaged packets
"  Compute at sender, check at receiver

! Computed from pseudo-header and transport
segment
"  Pseudo header includes

o  source and destination IP addresses
o  protocol number
o  TCP/UDP length
o  Slightly different method for IPv4 (RFC 768/793) and IPv6

(RFC 2460)
o  Included for protection against misrouted segments

"  Divide into 16-bit words and compute one’s complement of
the one’s complement sum of all the words

Part 2: UDP - User Datagram
Protocol

September 28, 10

User Datagram Protocol (UDP)

! Lightweight protocol
"  Just add port numbering and integrity checking

(checksums) to IP
"  No segmentation

! Unreliable connectionless transport service
"  No acknowledgments and no retransmissions
"  Checksum optional in IPv4 and mandatory in IPv6

September 28, 10

UDP datagram

!  Source port and checksum are optional
"  Checksum mandatory with IPv6

!  Length: header and data in bytes
!  Ports provide application multiplexing within a host (single IP)

 UDP SOURCE PORT UDP DESTINATION PORT
 UDP MSG LENGTH UDP CHECKSUM
 DATA ...

0 16 31 Part 3: TCP – Transmission Control
Protocol

September 28, 10

Outline

! TCP general overview
! TCP-header
! Connection management
! Error control
! Flow control
! Congestion control

September 28, 10

TCP properties

! End-to-end
! Connection oriented

"  State maintained at both ends
"  Identified by a four-tuple

o  Formed by the two end point’s IP address and TCP port
number

! Reliable
"  Try to guarantee in order delivery of each packet
"  Buffered transfer

! Full Duplex
"  Data transfer simultaneously in both directions

September 28, 10

TCP properties

!  Three main functionalities for active connection

Application Application

TCP TCP Network

Sender Receiver

buffers

1.  Error control
"  Deal with the best effort unreliable network

2.  Flow control
"  Do not overload the receiving application

3.  Congestion control
"  Do not overload the network itself

September 28, 10

TCP-header (RFC 793)
 0 10 20 31
+-+
| Source port | Destination port |
+-+
| Sequence number |
+-+
| Acknowledgment number |
+-+
hdr		U	A	P	R	S	F	
length	Varattu	R	C	S	S	Y	I	Advertized receiver window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent-pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

September 28, 10

TCP options

! 3 = window scaling
! 8,10 = Timestamp and echo of previous timestamp

"  Improve accuracy of RTT computation
"  Protect against wrapped sequence numbers

! 2 = Maximum Segment Size (MSS)
"  Negotiated while establishing connection
"  Try to avoid fragmentation

! 1 = No-operation
"  Sometimes between options, align option fields

! 0 = End of options
September 28, 10

! Three-way handshake

<SEQ=100><SYN>

<SEQ=300><ACK=101><SYN><ACK>

<SEQ=101><ACK=301><ACK>

<SEQ=101><ACK=301><ACK><DATA>

Third packet may contain data:

do what
I mean

Connection establishment

September 28, 10

Terminating connection

! Modified three-way handshake
! If other end has no more data to send, can be

terminated one way:
"  Send a packet with FIN flag set
"  Recipient acks the FIN packet

! After done with the data transfer to the other
direction
"  FIN packet and ack to the inverse direction

September 28, 10

Outline

! TCP general overview
! TCP-header
! Connection management
! Error control
! Flow control
! Congestion control

September 28, 10

! Mechanisms to detect and recover from lost
packets

! Sequence numbers
"  Used in acknowledgments
"  Identify the packets that are acknowledged

! Positive acknowledgments (ARQ)
! Error detection and correction

"  Timers
"  Checksums

! Retransmissions

Error control

September 28, 10

Cumulative Acknowledgments
! Acknowledge only the next expected packet in

sequence
"  E.g. received 1,2,3,4,6 -> ACK 5

! Advantages
"  Single ACK for multiple packets

o  Delayed ACKs scheme = one ACK for 2*MSS data
"  Lost ACK does not necessarily trigger retransmission

! Drawback
"  Cannot tell if lost only first or all of a train of packets
"  => Selective ACK

September 28, 10

Selective Acknowledgments (SACK)

! RFC 2018
! Helps recovery when multiple packets are lost
! Receiver reports which segments were lost using TCP

SACK (Selective Acknowledgment) options
! Sender can retransmit several packets per RTT

September 28, 10

Retransmission timeout (RTO)

! RTO associated to each transmitted packet
! Retransmit packet if no ACK is received before RTO

has elapsed
! Adjusting RTO (original algorithm):

"  RTT = (!*oldRTT)+((1-!)*newRTTsample) (recommeded
!=0,9)

"  RTO: "*RTT, ">1 (recommended "=2)
! Problem?

"  Does not take into account large variation in RTT

September 28, 10

Modified algorithm

! Initialize: RTO = 3
! Two variables: SRTT (smoothed round-trip time) and

RTTVAR (round-trip time variation)
"  First measurement R:

o  SRTT = R
o  RTTVAR = R/2

"  For subsequent measurement R:
o  RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R|
o  SRTT = (1 - alpha) * SRTT + alpha * R
o  Use alpha=1/8, beta=1/4

! RTO = SRTT + 4*RTTVAR
! If computed RTO < 1s –> round it up to 1s

September 28, 10

Karn's algorithm

! Receiving ACK for retransmitted
packet
"  Is the ACK for original packet or

retransmission??
"  No way to know...
# Do not update RTO for retransmitted

packets
! Timer backoff also needed

"  At timeout: new_timeout = 2*timeout
(exponential backoff)

! TCP timestamps can also help
disambiguate ACKs

Host A

Seq=100,20B data,ts={x,y}

time

premature timeout

Host B

Seq=92,8B data,ts={x,w}

Seq=92,8B data,ts={x,t}

S
eq

=9
2

tim
eo

ut

S
eq

=9
2

tim
eo

ut

Host A

Seq=100, 20B data

time

premature timeout

Host B

Seq=92, 8B data

Seq=92, 8B data

S
eq

=9
2

tim
eo

ut

S
eq

=9
2

tim
eo

ut

September 28, 10

Fast Retransmit

! Introduced by Van
Jacobson 1988

! TCP ACKs the next
expected missing packet

! Duplicate ACKs indicate
lost packet(s) #

! Do not wait for timeout
but retransmit after 3
duplicate ACKs
"  Wait for reordered

packets, don’t do go-
back-n

Host A

tim
eo

ut

Host B

time

X

resend seq X2

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs

September 28, 10

Outline

! TCP general overview
! TCP-header
! Connection management
! Error control
! Flow control
! Congestion control

September 28, 10

! Goal: do not overflow the receiving application
! Window based mechanism to limit transmission rate
! Receiver advertised window

Flow control

Application Application

TCP TCP Network

Sender Receiver

buffers

September 28, 10

Sliding Window

! Multiple packets simultaneously ”in flight”, i.e.
outstanding
"  Improve efficiency

! Buffer sent unacked packets

1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Sending window

sent and
acked sent but

not acked

unsent

September 28, 10

Receiver advertised window

! Receiver advertises the maximum window size the
sender is allowed to use

! Enables receiver TCP to signal sending TCP to
backoff
"  Receiving application not consuming received data fast

enough
! Value is included in each ACK

"  Can change dynamically

September 28, 10

Silly Window Syndrome

! Problem in worst case:
"  Receiver buffer between TCP and application fills

up
"  Receiving application read a single byte -> TCP

advertises a receiver window of size one
"  Sender transmits a single byte

! Lot of overhead due to packet headers

September 28, 10

Avoiding Silly Window Syndrome

! Window update only with significant size
"  At least MSS worth of data or
"  Half of its buffer

! Analogy at sender side
"  Application gives small chunks of data to TCP -> send

small packets
"  Nagle’s algorithm: Delay sending data until have MSS

worth of it
o  Does not work for all applications, e.g. delay sensitive apps
o  Need also mechanism to tell TCP to transmit immediately

-> Push flag

September 28, 10

Large Receiver Windows

! Receiver window hdr field size is 16 bits
"  => max size is about 65KBytes

! Example: 10Mbit/s path from Europe to US west
coast
"  0.15s * 10^7/8 # 190KBytes
"  16 bits not enough!

! Use Window Scaling option
"  Both ends set a factor during handshake (SYN

segments)
"  Multiply window field value with this factor

delay=RTT

bandwidth

September 28, 10

Outline
! TCP general overview
! TCP-header
! Connection management
! Error control
! Flow control
! Congestion control

"  Background and motivation
"  Basic TCP congestion control
"  Fairness
"  Other TCP versions and recent developments

! Conclusions
September 28, 10

! Flow control in TCP prevents overwhelming the receiving
application

!  Problem: Multiple TCP senders sharing a link can still overwhelm
it

Why we need congestion control

Congestion collapse due to:
!  Retransmitting lost packets

"  Further increases the load
!  Spurious retransmissions of packets

still in flight
"  Unnecessary retransmissions lead

to even more load!
"  Like pouring gasoline on a fire

th
ro

ug
hp

ut

load

packet losses

de
la

y

September 28, 10

Causes/costs of congestion: scenario 1
! two senders, two

receivers
! one router,

infinite buffers
! no retransmission

!  large delays
when congested

! maximum
achievable
throughput

unlimited shared
output link buffers

Host A
!in : original data

Host B

!out

September 28, 10

Causes/costs of congestion: scenario 2
! one router, finite buffers
! sender retransmission of lost packet

finite shared output
link buffers

Host A !in : original data

Host B

!out

!'in : original data, plus
retransmitted data

September 28, 10

!  always:
!  “perfect” retransmission only when loss:
!  retransmission of delayed (not lost) packet makes

larger (than perfect case) for same

Causes/costs of congestion: scenario 2

!"
in

!"out =

!"
in

!"out >

!"
in !"out

“costs” of congestion:
!  more work (retrans) for given “goodput”
!  unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
!in

! o
ut

b.

R/2

R/2
!in

! o
ut

a.

R/2

R/2
!in

! o
ut

c.

R/4

R/3

September 28, 10

Causes/costs of congestion: scenario 3
!  four senders
!  multihop paths
!  timeout/retransmit

!"
in

Q: what happens as
and increase ? !"

in

finite shared
output link

buffers

Host A
!in : original data

Host B

!out

!'in : original data, plus
retransmitted data

September 28, 10

Causes/costs of congestion: scenario 3

another “cost” of congestion:
!  when packet dropped, any upstream transmission

capacity used for that packet was wasted!

H
o
st
A

H
o
st
B

!
o
u
t

September 28, 10

Approaches towards congestion control

end-end congestion
control:

!  no explicit feedback from
network

!  congestion inferred from
end-system observed loss,
delay

!  approach taken by TCP

network-assisted
congestion control:

!  routers provide feedback
to end systems
"  single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

"  explicit rate sender
should send at

two broad approaches towards congestion control:

September 28, 10

Explicit Congestion Notification (ECN)

! Routers flag packets upon congestion
"  Active queue management

! Sender consequently adjusts sending rate
! Supported by routers but not widely used

"  Fear of software bugs
"  Running with default configurations

! Most OSs (Win7, Ubuntu, Fedora) ship with ECN
disabled
"  Tuning for bugs (e.g. popular Cisco PIX firewall)

September 28, 10

TCP Congestion control
!  Principle:

"  Continuously throttle TCP sender's transmission rate
"  Probe the network by increasing the rate when all is fine
"  Decrease rate when signs of congestion (e.g. packet loss)

! How?
"  Introduce congestion window (cwnd):

 #outstanding bytes = min(cwnd, rwnd)
"  Adjust cwnd size to control the transmission rate

o  Adjustment strategy depends on TCP version

flow control

September 28, 10

ARPAnet
TCP (Cerf et Kahn)# RFC 793

1981 1974 1969 1983

TCP/IP

Only flow control (receiver advertised window)!

-  Link LBL to UC Berkeley
-  throughput dropped from 32 Kbps

to 40 bps (factor of ~1000!) #

1986

1st congestion
collapse

Main differences lie
in congestion control
mechanisms

CTCP

1988

TCP Tahoe

Congestion control included

1990

TCP Reno

1994 1999

- TCP Vegas
- ECN

TCP New
Reno

1996

SAC
K

-04 -05

CUBIC

- FAST TCP
- BIC

-06

Glimpse into the past

September 28, 10

TCP Tahoe
!  1988 Van Jacobson
! The basis for TCP congestion control
!  Lost packets are sign of congestion

"  Detected with timeouts: no ACK received in time
! Two modes:

"  Slow Start
"  Congestion Avoidance

! New retransmission timeout (RTO) calculation
"  Incorporates variance in RTT samples
"  Timeout really means a lost packet (=congestion)

! Fast Retransmit

September 28, 10

Slow Start (SS)

! On each ACK for new data,
increase cwnd by 1 packet
"  Exponential increase in the size

of cwnd
"  Ramp up a new TCP connection

fast (not slow!)
o  Kind of a misnomer...

! In two cases:
"  Beginning of connection
"  After a timeout

Host A

one segment

R
TT

Host B

time

two segments

four segments

September 28, 10

Congestion Avoidance (CA)

! Approach the rate limit of the network more
conservatively

! Easy to drive the net into saturation but hard
for the net to recover

! Increase cwnd by 1 for cwnd worth of ACKs
(i.e. per RTT)

September 28, 10

Combining SS and CA

! Introduce Slow start
threshold (ssthresh) #

! On timeout:
"  ssthresh = 0.5 x cwnd
"  cwnd = 1 packet

! On new ACK:
"  If cwnd < ssthresh: do Slow

Start
"  Else: do Congestion Avoidance

!  ACKs: increase cwnd
by 1 MSS per RTT:
additive increase

!  loss: cut cwnd in half
(non-timeout-detected
loss): multiplicative
decrease

AIMD

AIMD: Additive Increase
Multiplicative Decrease

September 28, 10

TCP Tahoe: adjusting cwnd

Timeouts

Slow Start

t

cw
nd

Congestion avoidance
after cwnd reaches
half of previous cwnd

Set ssthresh to
half of cwnd

September 28, 10

! Van Jacobson 1990
! Fast retransmit with Fast recovery

"  Duplicate ACKs tell sender that packets still go through
"  Do less aggressive back-off:

o  ssthresh = 0.5 x cwnd
o  cwnd = ssthresh + 3 packets
o  Increment cwnd by one for each additional duplicate ACK
o  When the next new ACK arrives: cwnd = ssthresh

TCP Reno

Nb of packets that
were delivered

Fast
recovery

September 28, 10

TCP Reno: adjusting cwnd

Timeout

Slow Start
t

cw
nd

Fast retransmit
with Fast recovery

3 dup ACKs

September 28, 10

ssthresh

ssthresh

TCP Tahoe

TCP Reno

Transmission round

cw
nd

 w
in
do
w
 s
iz
e
(in

se
gm
en
ts
)

Tahoe vs. Reno

September 28, 10

slow
start

congestion
avoidance

fast
recovery

cwnd > ssthresh

loss:
timeout

loss:
timeout

new ACK loss:
3dupACK

loss:
3dupACK

loss:
timeout

Congestion control FSM

September 28, 10

slow
start

congestion
avoidance

fast
recovery

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

#"
cwnd > ssthresh

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s),as allowed

new ACK
cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s),as allowed

new ACK .

dupACKcount++
duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

dupACKcount++
duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

cwnd = ssthresh
dupACKcount = 0

New ACK

#"
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

Congestion control FSM: details

September 28, 10

TCP New Reno
!  1999 by Sally Floyd
!  Modification to Reno’s Fast Recovery phase
!  Problem with Reno:

"  Multiple packets lost in a window
"  Sender out of Fast Recovery after retransmission of only one

packet
$# cwnd closed up
 # no room in cwnd to generate duplicate ACKs for additional
Fast Retransmits

 # eventual timeout
!  New Reno continues Fast Recovery until all lost packets from

that window are recovered

September 28, 10

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP
connection 2

Is TCP fair?

TCP Fairness

September 28, 10

Why is TCP fair?
Two competing sessions:
!  Additive increase gives slope of 1, as throughput increases
!  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

September 28, 10

RTT Fairness
! What if two

connections have
different RTTs?
"  “Faster” connection

grabs larger share
! Reno’s (AIMD)

fairness is RTT biased

Fairness and parallel TCP
connections

! nothing prevents app from
opening parallel
connections between 2
hosts.

! web browsers do this
! example: link of rate R

supporting 9 connections;
"  new app asks for 1 TCP, gets

rate R/10
"  new app asks for 11 TCPs,

gets R/2 !

TCP Fairness Issues (cont.)

September 28, 10

! multimedia apps often do not use TCP
"  do not want rate throttled by congestion control

!  instead use UDP:
"  pump audio/video at constant rate, tolerate packet loss

Fairness and UDP

September 28, 10

Other TCP versions
! Delay-based congestion control

"  TCP Vegas
! Wireless networks

"  Take into account random packet loss due to bit errors
(not congestion!)

"  E.g. TCP Veno
! Paths with high bandwidth*delay

"  These “long fat pipes” require large cwnd to be
saturated

"  SS and CA provide too slow response
"  TCP CUBIC
"  Compound TCP (CTCP)

September 28, 10

TCP Vegas
!  1994 by Brakmo et Peterson
!  Issue: Tahoe and Reno RTO clock is very coarse grained

"  “ticks” each 500ms
!  Increasing delay is a sign of congestion

"  Packets start to fill up queues
"  Expected throughput = cwnd / BaseRTT
"  Compare expected to actual throughput
"  Adjust rate accordingly before packets are lost

!  Also some modifications to Slow start and Fast Retransmit
!  Potentially up to 70% better throughput than Reno
!  Fairness with Reno?

"  Reno grabs larger share due to late congestion detection

minimum of all
measured round
trip times

September 28, 10

BIC and CUBIC

! 2004, 2005 by Xu and Rhee
! Both for paths with high (bandwidth x delay)

"  These “long fat pipes” lead to large cwnd
"  SS and CA provide too slow response
"  Scale up to tens of Gb/s

! BIC TCP
"  No AIMD
"  Window growth function is combination of binary search

and linear increase
"  Aim for TCP friendliness and RTT fairness

September 28, 10

BIC and CUBIC

! BIC window growth function

[3]

September 28, 10

BIC and CUBIC (cont.)

! CUBIC TCP
"  Enhanced version of BIC
"  Simplifies BIC window control using a cubic function
"  Improves its TCP friendliness & RTT fairness

accelerate

accelerate

slow down

[3]

September 28, 10

Compound TCP (CTCP)
!  From Microsoft research, 2006
!  Tackles same problems as BIC and CUBIC

"  High speed and long distance networks
"  RTT fairness, TCP friendliness

!  Loss-based vs. delay-based approaches
"  Loss-based (e.g. HSTCP, BIC...) too aggressive
"  Delay-based (e.g. Vegas) too timid

!  Compound approach
"  Use delay metric to sense the network congestion
"  Adaptively adjust aggressiveness based on network congestion

level
"  Loss-based component: cwnd (standard TCP Reno)
"  Scalable delay-based component: dwnd
"  TCP sending window is Win = cwnd + dwnd

September 28, 10

Deployment

! Windows
"  Server 2008 uses Compound TCP (CTCP) by default
"  Vista, XP support CTCP, New Reno by default

! Linux
"  TCP BIC default in kernels 2.6.8 through 2.6.18
"  TCP CUBIC since 2.6.19

September 28, 10

Conclusions
!  Transport layer

"  End-to-end transport of data for applications
"  Application multiplexing through port numbers
"  Reliable (TCP) vs. unreliable (UDP)

!  UDP
"  Unreliable, no state
"  Optionally integrity checking

!  TCP
"  Connection management
"  Error control: deal with unreliable network path
"  Flow control: Prevent overwhelming receiving application
"  Congestion control: Prevent overwhelming the network

o  Loss-based and delay-based congestion detection
o  More and less aggressive rate control
o  Suitable for different network types
o  Fairness is important

September 28, 10

References
[1] IETF’s RFC page: http://www.ietf.org/rfc.html
[2] V. Jacobson: Congestion Avoidance and Control. In proceedings of

SIGCOMM '88.
[3] L. Brakmo et al.: TCP Vegas: New techniques for congestion

detection and avoidance. In Proceedings of SIGCOMM '94.
[4] RFC2582/RFC3782 - The NewReno Modification to TCP's Fast

Recovery Algorithm.
[5] L. Hu et al.: Binary Increase Congestion Control for Fast, Long

Distance Networks, IEEE Infocom, 2004.
[6] S. Ha et al.: CUBIC: A New TCP-Friendly High-Speed TCP Variant,

ACM SIGOPS, 2008.
[7] K. Tan et al.: Compound TCP: A Scalable and TCP-friendly

Congestion Control for High-speed Networks, In IEEE Infocom,
2006.

[8] W. John et al.: Trends and Differences in Connection Behavior
within Classes of Internet Backbone Traffic, In PAM 2008.

[9] A. Medina et al.: Measuring the evolution of transport protocols in
the internet, SIGCOMM CCR, 2005.

