User Datagram Protocol (UDP)
ransmission Control Protocol (TC

Matti Siekkinen

28.09.2010

material from "Computer Networking: A Top Down Approach” by Jim Kurose, Keith Ross.

Outline

! Background

-1 UDP
= Role and Functioning

1 TCP
= Basics
= Error control
= Flow control
= Congestion control

A”

Aalto-yliopisto
Teknillinen korkeakoulu

September 28, 10

Transport layer

Application Application
Transport <ij1>, UDP.E> Transport
Network Network
Link Link

Physical Physical

A” o

Aalto-yliopisto ° September 28, 10

Teknillinen korkeakoulu

Transport layer (cont.)

Offers end-to-end transport of data for
applications

Different characteristics

= Reliable vs. unreliable

= Forward error correction (FEC) vs. Automatic Repea’r-
reQuest (ARQ)

= TCP friendly or not
= Structured vs. unstructured stream

A!!

Aalto-yliopisto
Teknillinen kor

Reliable vs. best effort

! TCP - reliable transport

= Guarantees ordered delivery of packets

= Important for e.g.
o Signaling messages
o File transfer

-1 UDP - best effort transport

= No guarantees of packet delivery
= Non-critical data delivery, e.g. VoIP

A!!

Aalto-yliopisto SepTembeP 28, 10

Teknillinen kork I

Encapsulation

TR

s

>

headers ~ uappL data = DaleadJL
\ TCP segment
1P packet
Ethernet| frame CRC

A!!

Aalto-yliopisto
Teknillinen korkeakoulu

Sepfember 28, 10

-1 Well-known port
humbers
« RFC 2780 (44443)
= 0-1023

I Registered port
humbers
= 1024-49151

-1 Other port numbers
= 49152-65535

A”

Aalto-yliopisto
Teknillinen korkeakoult

Role of ports

Applications

DNS IRC Xyz

1

P 1

53

66167 65000

T~

Transport (TCP/UDP)

!

[P

September 28, 10

-

Checksums

For detecting damaged packets
= Compute at sender, check at receiver

Computed from pseudo-header and transport
segment
= Pseudo header includes

source and destination IP addresses
protocol number

TCP/UDP length

Slightly different method for IPv4 (RFC 768/793) and IPvé
(RFC 2460)

Included for protection against misrouted segments

= Divide into 16-bit words and compute one's complement of
the one's complement sum of all the words

A!!

Aalto-yliopisto
Teknillinen

Part 2: UDP - User Datagram
Protocol

User Datagram Protocol (UDP)

Lightweight protocol

= Just add port numbering and integrity checking
(checksums) to IP

= No segmentation
Unreliable connectionless transport service

= No acknowledgments and no retransmissions
= Checksum optional in IPv4 and mandatory in IPvé6

A!!

Aalto-yliopisto
Teknillinen kor

UDP datagram

16 31

UDP SOURCE PORT | UDP DESTINATION PORT
UDP MSG LENGTH UDP CHECKSUM
DATA ...

-l Source port and checksum are optional
= Checksum mandatory with IPv6
! Length: header and data in bytes
1 Ports provide application multiplexing within a host (single IP)

A!!

Aalto-yliopisto Sep‘l‘ember' 28, 10

Teknillinen korke |

Part 3: TCP - Transmission Contr
Protocol ?

Outline

! TCP general overview
1 TCP-header

! Connection management
-1 Error control

! Flow control

! Congestion control

A”

Aalto-yliopisto September 28, 10
Teknillinen korkeakoulu

A!!

Aalto-yliopisto

Teknillinen kor

TCP properties

End-to-end

Connection oriented
= State maintained at both ends

= Identified by a four-tuple

Formed by the two end point's IP address and TCP port
number

Reliable

= Try to guarantee in order delivery of each packet
= Buffered transfer

Full Duplex

= Data transfer simultaneously in both directions

TCP properties

Three main functionalities for active connection

1. Error control

Deal with the best effort unreliable network
2. Flow control

Do not overload the receiving application
3. Congestion control

Do not overload the network itself
Sender Receiver

Application buffers Application

TCP WAl Network

A!!

Aalto-yliopisto
Teknillinen kor

TCP-header (RFC 793)

0 10 20 3
+-+—+—+-+—-+-+—-+-F+-+-+-+—+-+—-F+-+—+—F+-F+—F—-+—F—-F—-F+—-+—F+—F—-F+—F+—-+—+-4=
| Source port | Destination port
e Sl i
| Sequence number
—+—+—-+—+-+—-F-+—-+—+-F+—-F-+—+—-F+—-F—-F—-+—F—-F—F—-F+—+—t—-F—-F—+—F—+—F+—+—+-
Acknowledgment number
e s D e e e e e S e T e e o
hdr | |[UIA[PIR[S|F] |
length| Varattu IR|IC|S|S|Y|I| Advertized receiver window |
| |GIKIH|IT[N[N]| |
R e s H e o e e e e e e S D e e At Al e
Checksum | Urgent-pointer |
-+ -+
Options | Padding |
—+—+—+—+-+—-F-+—-+—+-F+—-F—-+—+—-+—-F+—-F—-+—+—-F+—-F+—-F+—+—F+—-F—F—-+—F—-F+—-F+—-+—-+—+
data |
A—, e+ —+—-+—+—+—-+-+—-+—F+-F+—-F+-+—+—F+—-F—-F—-+—F+—F—-F—F—-F+—F—-F—-F—-F+—F+—+—-+—-+—-+

Aalto-yliopisto September 28, 10

Teknillinen korkeakoulu

TCP options

3 = window scaling

8,10 = Timestamp and echo of previous tfimestamp
= Improve accuracy of RTT computation
= Protect against wrapped sequence numbers
2 = Maximum Segment Size (MSS)
= Negotiated while establishing connection
= Try to avoid fragmentation
1 = No-operation
= Sometimes between options, align option fields

A,",l O = End of options

Aalto-yliopisto
Teknillinen k¢

Connection establishment

<SEQ=100><SYN>

<SEQ=300><ACK=101><SYN><ACK>

<SEQ=101><ACK=301><ACK>

Third packet may contain data:

<SEQ=101><ACK=301><ACK><DATA>

A!!

Aalto-yliopisto | Sep‘l‘ember' 28, 10

Teknillinen korke |

Terminating connection

Modified three-way handshake
If other end has no more data to send, can be
terminated one way:

= Send a packet with FIN flag set

= Recipient acks the FIN packet
After done with the data transfer to the other
direction
= FIN packet and ack to the inverse direction

A!!

Aalto-yliopisto
Teknillinen kc

Outline

! TCP general overview
1 TCP-header

! Connection management
! Error control

! Flow control

! Congestion control

A”

Aalto-yliopisto September 28, 10
Teknillinen korkeakoulu

Error control

Mechanisms to detect and recover from lost
packets

Sequence numbers

= Used in acknowledgments

= Tdentify the packets that are acknowledged
Positive acknowledgments (ARQ)

Error detection and correction

= Timers

= Checksums

Retransmissions

A!!

Aalto-yliopisto
Teknillinen kor

Cumulative Acknowledgments

Acknowledge only the next expected packet in
sequence

= Eg.received1,2,34,6 ->ACKbH5
Advantages

= Single ACK for multiple packets
Delayed ACKs scheme = one ACK for 2*MSS data

= Lost ACK does not necessarily trigger retransmission

Drawback
= Cannot tell if lost only first or all of a train of packets
= => Selective ACK

A!!

Aalto-yliopisto
Teknillinen k

Selective Acknowledgments (SACK)

RFC 2018
Helps recovery when multiple packets are lost

Receiver reports which segments were lost using T
SACK (Selective Acknowledgment) options

Sender can retransmit several packets per RTT

A”

Teknillinen k¢

Retransmission timeout (RTO)

RTO associated to each transmitted packet

Retransmit packet if no ACK is received before RT

has elapsed

Adjusting RTO (original algorithm):

= RTT = (a*oldRTT)+((1-a)*newRTTsample) (recommeded
a=0,9)

= RTO: B*RTT, B>1 (recommended p=2)

Problem?

= Does not take into account large variation in RTT

illinen |

Modified algorithm

Initialize: RTO = 3
Two variables: SRTT (smoothed round-trip time) an
RTTVAR (round-trip time variation)

= First measurement R:
SRTT=R
RTTVAR = R/2

= For subsequent measurement R:
RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R|
SRTT = (1 - alpha) * SRTT + alpha * R
Use alpha=1/8, beta=1/4

RTO = SRTT + 4*RTTVAR

A” If computed RTO < 1s -> round it up to 1s

Teknillinen k

Karn's algorithm

Receiving ACK for retransmitted
packet

= Ts the ACK for original packet or
retransmission??

= No way to know...

Do not update RTO for retransmitted
packets

Timer backoff also needed

= At timeout: new_timeout = 2*timeout
(exponential backoff)

TCP timestamps can also help
disambiguate ACKs

A” time

Aalto-yliopisto
Teknilliner

92 timeout —>|

92 timeout —sj+— Seq

[Seq

premature timeout

Fast Retransmit

Introduced by Van
Jacobson 1988

TCP ACKs the next seq # x1

o seq # x2
expected missing packet seq#x3

Duplicate ACKs indicate 2232.5?%‘

lost packet(s)

Do not wait for tfimeout
but retransmit after 3 _ Pl {

duplicate ACKs ke
= Wait for reordered
packets, don't do go-
back-n

A’, time

Aalto-yliopisto
Teknillinen k¢

—

timeout

Outline

! TCP general overview
1 TCP-header

! Connection management
-1 Error control

! Flow control

! Congestion control

A”

Aalto-yliopisto September 28, 10
Teknillinen korkeakoulu

Flow control

Goal: do not overflow the receiving application
Window based mechanism to limit transmission rat
Receiver advertised window

Sender Receiver

Application /buffers\ Application

* Network

—]
®
o
L R

A!!

Aalto-yliopisto
Teknillinen korl

Sliding Window

112134 5/6/7/89|10[11|12]13]...

sent and L |
acked sent but unsent

not acked

- Multiple packets simultaneously “in flight”, i.e.
outstanding

= Improve efficiency
I Buffer sent unacked packets

A!!

Aalto-yliopisto September 28, 10

Teknillinen korkeakoul

Receiver advertised window

Receiver advertises the maximum window size the
sender is allowed to use

Enables receiver TCP to signal sending TCP to
backoff

= Receiving application not consuming received data fast
enough

Value is included in each ACK
= Can change dynamically

A!!

Aalto-yliopisto
Teknillinen kc

Silly Window Syndrome

Problem in worst case:
= Receiver buffer between TCP and application fills
up
= Receiving application read a single byte -> TCP
advertises a receiver window of size one

= Sender transmits a single byte
Lot of overhead due to packet headers

A"

Teknillinen kor

Avoiding Silly Window Syndrome

Window update only with significant size
= At least MSS worth of data or
= Half of its buffer

Analogy at sender side

= Application gives small chunks of data to TCP -> send
small packets

= Nagle's algorithm: Delay sending data until have MSS
worth of it

Does not work for all applications, e.g. delay sensitive app

Need also mechanism to tell TCP to transmit immediately
-> Push flag

A!!

Aalto-yliopisto
Teknillinen

Large Receiver Windows

Receiver window hdr field size is 16 bits
= =>max size is about 65KBytes

Example: 10Mbit/s path from Europe to US west
coast bandwidth
N T
/-70.15§ *1077/8 = 190KBytes
lay=RTT = 16 bits not enough!
Use Window Scaling option

= Both ends set a factor during handshake (SYN
segments)

= Multiply window field value with this factor

Outline

! TCP general overview

1 TCP-header

! Connection management
! Error control

! Flow control

1 Congestion control
= Background and motivation
= Basic TCP congestion control
= Fairness
= Other TCP versions and recent developments

A!! _! Conclusions

Aalto-yliopisto Sep‘l‘ember' 28, 10

Teknillinen korke |

Why we need congestion control

Flow control in TCP prevents overwhelming the receiving
application

Problem: Multiple TCP senders sharing a link can still overwhe
It

packet losses

Congestion collapse due to:
Retransmitting lost packets
= Further increases the load

Spurious retransmissions of packe
still in flight

= Unnecessary retransmissions lead
load to even more load!

= Like pouring gasoline on a fire

A!!

Aalto-yliopisto
Teknillinen k¢

Causes/costs of congestion: scenario 1

! two senders, two
receivers

! one router,
infinite buffers

nho retransmission

unlimited shared
output link buffers

delay

! large delays
_ when congested
i - maximum
N C/2 achievable
" throughput

Aalto-yliopisto SepTember' 28, 10

Teknillinen korkeakoult

Causes/costs of congestion: scenario 2

! one router, finite buffers
_I sender retransmission of lost packet

Host A

A, - original data A

A, : original data, plus
retransmitted data

finite shared output
link buffers

||||||

A”

Aalto-yliopisto September 28, 10

Teknillinen korkeakoulu

Causes/costs of congestion: scenario 2

always: A = A

in out
“perfect” retransmission only when loss: 7\ A

out
retransmission of delayed (not lost) packeT "makes 7\.m
larger (than perfect case) for same 7\'out
R/2 |---mmmmsmmmmmmeeao ooy : R2 |----mmmsmmmmmmeoa o oee : R/2
5 . - R/~ = E 5
< i < i < RA| T !
)\: R/I2 , R/:2 , R/I2

o
O

da.
“costs” of congestion:
- 7 more work (retrans) for given "goodput”
A” 7 unneeded retransmissions: link carries multiple copies of pkt

Aalto-yliopisto
Teknillinen kor

Causes/costs of congestion: scenario 3

I four senders Q: what happens as 7\.I

1 multihop paths and A increase ?
! timeout/retransmit n

Host A L. A
__ M, - original data out

'@ < M\in: original data, plus
1N retransmitted data
l-

finite shared

/Z = /

\\
\&

V.
6\4\;\!;

a
R —
ANAN I

A”

Aalto-yliopisto Sep‘rember‘ 28, 10

Teknillinen korkeakoulu

Causes/costs of congestion: scenario 3

5
O
<

)L!
N
another "cost"” of congestion:

7 when packet dropped, any upstream transmission
capacity used for that packet was wasted!
A

Aalto-yliopisto Sep‘rember‘ 28, 10

Teknillinen korkeakoul

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:
no explicit feedback from routers provide feedback
network to end systems
congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,
approach taken by TCP ATM)

= explicit rate sender
should send at

A!!

Aalto-yliopisto
Teknillinen kor

xplicit Congestion Notification (EC

Routers flag packets upon congestion
= Active queue management

Sender consequently adjusts sending rate
Supported by routers but not widely used

= Fear of software bugs
= Running with default configurations

Most OSs (Win7, Ubuntu, Fedora) ship with ECN
disabled

= Tuning for bugs (e.g. popular Cisco PIX firewall)

TCP Congestion control

Principle:
= Continuously throttle TCP sender’s transmission rate

= Probe the network by increasing the rate when all is fine
= Decrease rate when signs of congestion (e.g. packet loss)

How?
= Introduce congestion window (cwnd):
#Houtstanding bytes = min(cwnd, rwnd)

= Adjust cwnd size to control the transmission rate
Adjustment strategy depends on TCP version

flow control

A!!

Aalto-yliopisto
Teknillinen kor

Glimpse into the past

Only flow control (receiver advertised window) Congestion control included
<

969 1974 19811983 1986 1988 1990 1994 1996 1999 -04-05 -06

gy o

RPAnet
TCP (Cerf et Kahn) RFC 793

TCP/IP
1st congestipn

COPREFCP Tahos \
N\ S

Link LBL to UC Berkeley TCPReno _1Cp veghs~_
throughput droppethfreaifagrkhees|lie Bon L
to 40 bps (factorgfcti988tion cotrol Kk TCPNew [\

n” mechanisms Reno

~ .
[
Aalto-yliopisto
Teknilliner

TCP Tahoe

1988 Van Jacobson
The basis for TCP congestion control
Lost packets are sign of congestion

= Detected with timeouts: no ACK received in time
Two modes:

= Slow Start

= Congestion Avoidance

New retransmission timeout (RTO) calculation

= Incorporates variance in RTT samples

= Timeout really means a lost packet (=congestion)

Fast Retransmit

A!!

Aalto-yliopisto
Teknillinen kor

Slow Start (SS)

On each ACK for new data,
increase cwnd by 1 packet

= Exponential increase in the size
of cwnd

= Ramp up a new TCP connection
fast (not slow!)

Kind of a misnomer-... NM
— q
In two cases: — 2
= Beginning of connection
= After a timeout

«—RTT—

A!!

Aalto-yliopisto
Teknillinen kor

Congestion Avoidance (CA)

Approach the rate limit of the network more
conservatively

Easy to drive the net into saturation but hard
for the net to recover

Increase cwnd by 1 for cwnd worth of ACKs
(i.e. per RTT)

A!!

Aalto-yliopisto
Teknillinen kc

Introduce Slow start
threshold (ssthresh)
On ftimeout:
» ssthresh = 0.5 x cwnd
= cwnd = 1 packet
On new ACK:

= ITf cwnd < ssthresh: do Slow
Start

= Else: do Congestion Avoidance

Combining SS and CA

— AIMD

7 ACKSs: increase cwnd
by 1 MSS per RTT:
additive increase

7 loss: cut ewnd in half
(non-timeout-detected
loss): multiplicative
decrease

AIMD: Additive Increase
Multiplicative Decrease

TCP Tahoe: adjusting cwnd

Timeouts

Iz

4
Y /

September 28, 10

Van Jacobson 1990

Fast retransmit with Fast recovery
= Duplicate ACKs tell sender that packets still go throug

= Do less aggressive back-off: Nb of packets that
ssthresh = 0.5 x cwnd were delivered
Fast cwnd = ssthresh @packe’rs
recovery Increment cwnd by one for each additional duplicate ACK
When the next new ACK arrives: cwnd = ssthresh

A!!

Aalto-yliopisto
Teknillinen kor

TCP Reno: adjusting cwnd

Timeout 3 dup ACKs

v
J‘

cwnd

September 28, 10

Tahoe vs. Reno

TCP Reno

ssthresh

ssthresh

T

TCP Tahoe

cwnd window size (in
NJ
I

segments)

o

1 1 T T T 1 T T 17 T T T T 1
01 2 3 4 5 6 7 8 9 10111213 1415

Transmission round

A”

Aalto-yliopisto September 28, 10

Teknillinen korkeakoulu

Congestion control FSM

""""""""""" cwnd > ssthresh serEEsien
{C7) |st: avoidance
7 (/ U timeout
{(7): oss: N :
U timeout
@) oss: new ACK || loss:
WA timeout W 3dupACK
> [fast p
loss: recovery

3dupACK

A7

Aalto-yliopisto SepTember‘ 28, 10

Teknillinen korkeakoulu

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount = 0

timeout </

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount=0

retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

A!!

Aalto-yliopisto
Teknillinen korke

Congestion control FSM: details

duplicate ACK
dupACKcount++ NnewACK

. !

new ACK

cwnd = cwnd + MSS « (MSS/cwnd)
dupACKcount =0
transmit new segment(s),as allowed

cwnd = cwnd+MSS
dupACKcount=0

transmit new segment(s),as allowed
cwnd > ssthresh

A , [congestion
timeout avoidance
ssthresh = cwnd/2
cwnd = 1 MSS duplicate ACK
dupACKgouqt = 0 dupACKcount++
retransmit missing segment A
timeout
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount =0 “wnd = ssthresh
retransmit missing segment dS;\;VECIZ c?)?mtriso dupACKcount ==
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment
fast

A

v

recovery

duplicate ACK

u cwnd = cwnd + MSS

tr

September 28, 10

A!!

Aalto-yliopisto

Teknillinen kc

TCP New Reno

1999 by Sdlly Floyd
Modification to Reno's Fast Recovery phase
Problem with Reno:

= Multiple packets lost in a window

= Sender out of Fast Recovery after retransmission of only on
packet

=> cwnd closed up

= no room in cwnd to generate duplicate ACKs for additional
Fast Retransmits

=> eventual timeout

New Reno continues Fast Recovery until all lost packets from
that window are recovered

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

I
&
[

TCP ﬂo’rﬂeneck
router
capacity R

conhnection 2

Is TCP fair?

A!!

Aalto-yliopisto SepTember' 28, 10

Teknillinen korkeakol

Connection 2 throughput »

A!!

Aalto-yliopisto
Teknillinen kor

Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughput increases
multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

ongestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 1 throughput R

TCP Fairness Issues (cont.)

Fairness and parallel TCP

RTT Fairness

What if two connections
connections have hothing prevents app from
different RTTs? opening parallel
= “Faster” conhection connections between 2
grabs larger share hosts.
Reno's (AIMD) web browsers do this

fairness is RTT biased example: link of rate R
supporting 9 connections;

= new app asks for 1 TCP, gets
rate R/10

= new app asks for 11 TCPs,
gets R/2 |

A

IIIIIIII

Fairness and UDP

! multimedia apps often do not use TCP
= do not want rate throttled by congestion control

-l instead use UDP:
= pump audio/video at constant rate, tolerate packet loss

A”

Aalto-yliopisto Sep‘rember‘ 28, 10

Teknillinen korkeakoulu

Other TCP versions

Delay-based congestion control
= TCP Vegas

Wireless networks

= Take into account random packet loss due to bit errors
(not congestionl)

= E.g. TCP Veno
Paths with high bandwidth*delay

= These “long fat pipes” require large cwnd to be
saturated

= 5SS and CA provide too slow response
= TCP CUBIC
= Compound TCP (CTCP)

A!!

Aalto-yliopisto
Teknillinen ke

TCP Vegas

1994 by Brakmo et Peterson
Issue: Tahoe and Reno RTO clock is very coarse grained
= "ticks" each 500ms
Increasing delay is a sign of congestion minimum of all
= Packets start to fill up queues measured round
= Expected throughput = cwnd / BaseRTT trip times
= Compare expected to actual throughput
= Adjust rate accordingly before packets are lost
Also some modifications tfo Slow start and Fast Retransmit
Potentially up to 70% better throughput than Reno
Fairness with Reno?
= Reno grabs larger share due to late congestion detection

A!!

Aalto-yliopisto
Teknillinen

BIC and CUBIC

2004, 2005 by Xu and Rhee

Both for paths with high (bandwidth x delay)

= These "long fat pipes”lead to large cwnd
= 5SS and CA provide too slow response
= Scale up to tens of Gb/s

BIC TCP

= No AIMD

= Window growth function is combination of binary searc
and /inear increase

= Aim for TCP friendliness and RTT fairness

A!!

Aalto-yliopisto
Teknillinen ke

BIC and CUBIC

-1 BIC window growth function

Additive Increase Binary Search

« L

Max Probing

‘e >

September 28, 10

BIC and CUBIC (cont.)

CUBIC TCP
= Enhanced version of BIC
= Simplifies BIC window control using a cubic function
= Improves its TCP friendliness & RTT fairness

Steadv State Behavior

< >

Wmax

slow downz
H Max Probing

‘e >

accelerate

A” w... =C(t- K)3 W K = ‘vW|11zlx B/C

Aalto-yliopisto
Teknillinen korl

Compound TCP (CTCP)

From Microsoft research, 2006
Tackles same problems as BIC and CUBIC
= High speed and long distance networks
= RTT fairness, TCP friendliness
Loss-based vs. delay-based approaches
= Loss-based (e.g. HSTCP, BIC...) too aggressive
= Delay-based (e.g. Vegas) too timid
Compound approach
= Use delay metric to sense the network congestion

: Ada‘:‘rively adjust aggressiveness based on network congestio
leve

= Loss-based component: cwnd (standard TCP Reno)
= Scalable delay-based component: dwnd
= TCP sending window is Win = cwnd + dwnd

A!!

Aalto-yliopisto
Teknilliner

Deployment

-1 Windows
= Server 2008 uses Compound TCP (CTCP) by default
= Vista, XP support CTCP, New Reno by default

_! Linux
= TCP BIC default in kernels 2.6.8 through 2.6.18

= TCP CUBIC since 2.6.19

A!!

Aalto-yliopisto Sep‘rember‘ 28, 10

Teknillinen korkeakoulu

Conclusions

Transport layer
= End-to-end transport of data for applications
= Application multiplexing through port numbers
= Reliable (TCP) vs. unreliable (UDP)
UDP
= Unreliable, no state
= Optionally integrity checking
TCP
= Connection management
= Error control: deal with unreliable network path
= Flow control: Prevent overwhelming receiving application

= Congestion control: Prevent overwhelming the network
Loss-based and delay-based congestion detection
More and less aggressive rate control
Suitable for different network types
Fairness is important

A!!

Aalto-yliopisto
Teknillinen kor

References

[1] IEF's RFC page: http://www.ietf.org/rfc.html

[2] V. Jacobson: Congestion Avoidance and Control. In proceedings of
SIGCOMM '88.

[3]L. Brakmo et al.: TCP Vegas: New techniques for congestion
detection and avoidance. In Proceedings of SIGCOMM '94.

[4] RFC2582/RFC3782 - The NewReno Modification to TCP's Fast
Recovery Algorithm.

[5] L. Hu et al.: Binary Increase Congestion Control for Fast, Long
Distance Networks, IEEE Infocom, 2004.

[6]S. Haet al.: CUBIC: A New TCP-Friendly High-Speed TCP Var'ian'r,
ACM SIGOPS, 2008.
[7] K. Tan et al.: Compound TCP: A Scalable and TCP-friendly

g%n 6es‘rion Control for High-speed Networks, In IEEE Infocom,

[8] W. John et al.: Trends and Differences in Connection Behavior
within Classes of Internet Backbone Traffic, In PAM 2008.

[9] A. Medina et al.: Measuring the evolution of transport protocols in |
” the internet, SIGCOMM CCR, 2005.

Aalto-yliopisto
Tekr

