

On Protocol Design

T-110.4100 Computer Networks
13.10.2008

Miika Komu <miika@iki.fi>
Helsinki Institute for Information Tech.

mailto:miika@iki.fi

Table of Contents

● Goals & requirements

● Design & specs

● Protocol properties

● Failure tolerance

● Scalability

● Interoperability

● Compatibility

● N/w Environments

● Protocol models

● Layering

● Naming

● State & Transitions

● Flow Diagrams

● Protocol Encoding

● Security

● Correctness

● Deployment

● Standardization

Goals and Requirements
● Need to exchange information between

two or more devices  need for a protocol
– The usage scenarios are mapped to protocol

engineering goals and requirements

● Can't have everything: goals usually
conflict with each other, need to prioritize
– Reliable vs. fast
– Versatile vs. simple

● Do not overlook economics: money, time
and people set the limits for goals and
requirements

Design and Specification

● Three technical aspects:

– Host processing: protocol states, transitions,
retransmissions, ordering of packets

– What goes on wire: serialization, formatting,
framing and fragmentation, messages, round
trips

– Reality: implementation complexity,
performance

● KISS = Keep It Simple Stupid!

● Design it as simple as you can, but not simpler
● Reuse/extend existing design or protocol if possible

Requirements for Protocols

● Reliability
● Error correction
● Packet ordering
● Congestion control
● Availability
● Error detection
● One-to-one vs.

one-to-many

● Zero conf vs.
manual

● Mobility
● Multihoming
● Security
● Privacy
● Middlebox aware
● Energy efficiency

Failure Tolerance

● Retransmissions (e.g. in WLAN)

– Timeouts, acknowledgments and window size
● Failover mechanisms

– Network malfunction
– Implementation crash and reboot
– Host reboot

● Are all corner cases covered?

– Protocol error handling
– Simultaneous connection initiation

Scalability

● State explosion (at middleboxes)
● Computational overhead and complexity

– Small devices with limited CPU and batteries

● Decentralization (distributed protocols)
– Load balancing vs. fault tolerance

● Caching for performance
● Adaptability

Interoperability

● Multiple implementations from different
vendors or organizations

– Are the implementations compatible?
– Is the specification strict enough?

● Be conservative in sending and liberal in
receiving

● Specification is a guideline: interoperability
between real-world implementations more
important in practice

Compatibility

● Incompatible protocols should reject
communications with each other

– For example v1 and v2 protocol
● Mandatory and optional protocol parameter

– Optional parameters: future compatibility
● Extension compatibility

– Do all of the N extensions work together?
● Backwards and forwards compatibility

Network Environment
● Single-hop vs. Multi-hop

● Access Media

– Wired vs. wireless media
● LAN, WAN

● NATted/IPv4 vs. IPv6 networks

● Multihoming, multiaccess, multipath

● Mobility: host mobility, network mobility

● Infrastructure: name servers, middleboxes

● Interplanetary networks

Protocol Models
● Architectural models

– Client-server vs. p2p
– Centralized vs. distributed
– Cloud computing
– Publisher vs. subscriber

● Communication models
– Unicast, anycast, broadcast, multicast
– Point-to-point vs. end-to-end
– End-to-end vs. end-to-middle
– Internet routing vs. overlay routing

Layering
● On which layer should the protocol

operate?
– TLS vs. IPsec

● Application layer: more intelligent
decisions, easier to implement, easier to
deploy
– Application frameworks and middleware

● Lower layers: generic purpose “service”
to application layer => software reuse

● Strict vs. loose layering (cross-layer
interaction)

Addressing and Naming

● Human readable
– Hostnames, FQDN, URIs
– Subject to internationalization issues

● Machine readable
– Operator or device manufacturer assigned (IP

address, MAC addresses)
– Self-assigned addresses (ad-hoc networks)
– Cryptographic names (PGP, ssh, HIP)

States and Transitions

● State machine models different phases of
communication

– Example: handshake, communications, connection
maintenance and teardown

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and
state does not expire

– Soft state: needs to refreshed, otherwise expires

Flow Diagrams

● Examples of packet flows
● Illustrate the protocol to the reader of the

protocol specification
● Usually contain at least two hosts
● Illustrates also the flow of time

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● PDU, framing, segmentation, MTU
● Text encoding (appl. layer protocols)

– xml, html, sip
– easier to debug for humans
– lines usually separated by newlines
– character set (internationalization) issues
– inefficient (compression could be used)

Protocol Encoding 2/2

● Binary formats
– Integers in Big-Endian format
– Padding
– Bandwidth efficient
– IPv4, Ipv6, TCP, XDR, ASN.1, BER, TLV, etc

● Typically binary formats are visualized in
“box notation” for engineers in protocol
specifications

Security 1/5

● Better to embed in the design from day
one
– Security difficult to add afterwards to

deployed protocols
– Privacy even more difficult to add afterwards

– We don't need security – think again!

● Attack pattern
– Scan, intrude, exploit, abuse, cover tracks

● Protection pattern
– Detect, prevent, contain

Security 2/5

● Internal vs. external threat

– Attacker within company or outside
– Local software (e.g. trojan) vs. remote attack

● Active (write packets) and passive (read
packets) attacks

● Man-in-the-middle

● Blind attack

● Link-local attacks vs. remote attacks

● Reflection, amplification, flooding

● DoS vs. DDos attack

Security 3/5

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!
● Attacks against availability: resource depletion /

exhaustion (DoS/DDoS), countermeasures:

– Rate limitation

– Intermediaries (firewalls, network intrusion detect.)

– Capthas, computational puzzles

Security 4/5

● Opportunistic security vs. infrastructure

– Leap of faith/time or huge deployment cost?
● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the application know that the
connection is secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting

Security 5/5

● Do not hard-code crypto algos to the protocol! Use
suites and negotiation because algos become
vurnerable due to faster machines (Moore's law)

● Murphy's law: everything that can go wrong, will go
wrong

– Hackers will find and abuse holes in the design
and implementations

– The overall strength of the system is as strong
as its weakest link!

Protocol Correctness
● Verify that the protocol “works”

– Implement your own specification!
– Review from other people
– Simulation or emulation
– Mathematical analysis
– Security analysis
– Scalability/performance analysis

● Ready for deployment?

– More difficult to “fix” already deployed
protocols and implementations

– Future compatibility

Deployment Obstacles

● Middlebox traversal

– Does the protocol go through NATs, routers, proxies
and firewalls?

● NAT traversal

– NATs make protocol engineering difficult

– Legacy NAT devices all work differently

– New transport protocols get dropped

– Tweaking “holes” to NAT boxes

– Referrals don't work

– Counter-measures: TCP/UDP encapsulation, hole
punching, ICE/STUN or Teredo

IETF Standardization

● Why? More reviewers => better security, compatibility,
deployment, scalability

– Even wizards make errors

– Why not? Standardization takes time

● Open participation, no membership fee

● Process pattern: BoF -> WG -> drafts -> RFC -> close WG

● Rough consensus and running code

– To get an RFC, two interoperable implementations are
required

● IETF also includes research groups for experimental designs

● IPR: best effort notification about patents

– Watch out for submarines!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

