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Goals and Requirements
● Need to exchange information between 

two or more devices  need for a protocol
– The usage scenarios are mapped to protocol 

engineering goals and requirements

● Can't have everything: goals usually 
conflict with each other, need to prioritize
– Reliable vs. fast
– Versatile vs. simple

● Do not overlook economics: money, time 
and people set the limits for goals and 
requirements



  

Design and Specification

● Three technical aspects:

– Host processing: protocol states, transitions, 
retransmissions, ordering of packets

– What goes on wire: serialization, formatting, 
framing and fragmentation, messages, round 
trips

– Reality: implementation complexity, 
performance

● KISS = Keep It Simple Stupid!

● Design it as simple as you can, but not simpler
● Reuse/extend existing design or protocol if possible



  

Requirements for Protocols

● Reliability
● Error correction
● Packet ordering
● Congestion control
● Availability
● Error detection
● One-to-one vs. 

one-to-many

● Zero conf vs. 
manual

● Mobility
● Multihoming
● Security
● Privacy
● Middlebox aware
● Energy efficiency



  

Failure Tolerance

● Retransmissions (e.g. in WLAN)

– Timeouts, acknowledgments and window size
● Failover mechanisms

– Network malfunction
– Implementation crash and reboot
– Host reboot

● Are all corner cases covered?

– Protocol error handling
– Simultaneous connection initiation



  

Scalability

● State explosion (at middleboxes)
● Computational overhead and complexity

– Small devices with limited CPU and batteries

● Decentralization (distributed protocols)
– Load balancing vs. fault tolerance

● Caching for performance
● Adaptability



  

Interoperability

● Multiple implementations from different 
vendors or organizations

– Are the implementations compatible?
– Is the specification strict enough?

● Be conservative in sending and liberal in 
receiving

● Specification is a guideline: interoperability 
between real-world implementations more 
important in practice



  

Compatibility

● Incompatible protocols should reject 
communications with each other

– For example v1 and v2 protocol
● Mandatory and optional protocol parameter

– Optional parameters: future compatibility
● Extension compatibility

– Do all of the N extensions work together?
● Backwards and forwards compatibility



  

Network Environment
● Single-hop vs. Multi-hop

● Access Media

– Wired vs. wireless media
● LAN, WAN

● NATted/IPv4 vs. IPv6 networks

● Multihoming, multiaccess, multipath

● Mobility: host mobility, network mobility

● Infrastructure: name servers, middleboxes

● Interplanetary networks



  

Protocol Models
● Architectural models

– Client-server vs. p2p
– Centralized vs. distributed
– Cloud computing
– Publisher vs. subscriber

● Communication models
– Unicast, anycast, broadcast, multicast
– Point-to-point vs. end-to-end
– End-to-end vs. end-to-middle
– Internet routing vs. overlay routing



  

Layering
● On which layer should the protocol 

operate?
– TLS vs. IPsec

● Application layer: more intelligent 
decisions, easier to implement, easier to 
deploy
– Application frameworks and middleware

● Lower layers: generic purpose “service” 
to application layer => software reuse

● Strict vs. loose layering (cross-layer 
interaction)



  

Addressing and Naming

● Human readable
– Hostnames, FQDN, URIs
– Subject to internationalization issues

● Machine readable
– Operator or device manufacturer assigned (IP 

address, MAC addresses)
– Self-assigned addresses (ad-hoc networks)
– Cryptographic names (PGP, ssh, HIP)



  

States and Transitions

● State machine models different phases of 
communication

– Example: handshake, communications, connection 
maintenance and teardown

● Stateless operation: operates based on packet contents

● Stateful operation: packet contents + “history”

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine

– Hard state: state transitions explicitly confirmed and 
state does not expire

– Soft state: needs to refreshed, otherwise expires



  

Flow Diagrams

● Examples of packet flows
● Illustrate the protocol to the reader of the 

protocol specification
● Usually contain at least two hosts
● Illustrates also the flow of time



  

Protocol Encoding 1/2

● Serialization (marshalling) to wire format
● PDU, framing, segmentation, MTU
● Text encoding (appl. layer protocols)

– xml, html, sip
– easier to debug for humans
– lines usually separated by newlines
– character set (internationalization) issues
– inefficient (compression could be used)



  

Protocol Encoding 2/2

● Binary formats
– Integers in Big-Endian format
– Padding
– Bandwidth efficient
– IPv4, Ipv6, TCP, XDR, ASN.1, BER, TLV, etc

● Typically binary formats are visualized in 
“box notation” for engineers in protocol 
specifications



  

Security 1/5

● Better to embed in the design from day 
one
– Security difficult to add afterwards to 

deployed protocols
– Privacy even more difficult to add afterwards

– We don't need security – think again!

● Attack pattern
– Scan, intrude, exploit, abuse, cover tracks

● Protection pattern
– Detect, prevent, contain



  

Security 2/5

● Internal vs. external threat

– Attacker within company or outside
– Local software (e.g. trojan) vs. remote attack

● Active (write packets) and passive (read 
packets) attacks

● Man-in-the-middle

● Blind attack

● Link-local attacks vs. remote attacks

● Reflection, amplification, flooding

● DoS vs. DDos attack



  

Security 3/5

● Security countermeasures:

– Access control lists, passwords, hashes

– Public-key signatures and certificates

– Cryptography

– Open design vs. security by obscurity

– Don't forget about user education!
● Attacks against availability: resource depletion / 

exhaustion (DoS/DDoS), countermeasures:

– Rate limitation

– Intermediaries (firewalls, network intrusion detect.)

– Capthas, computational puzzles



  

Security 4/5

● Opportunistic security vs. infrastructure

– Leap of faith/time or huge deployment cost?
● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the application know that the 
connection is secured?

● Find the balance between usability and security

– Security increases complexity

– Avoid manual configuration and prompting



  

Security 5/5

● Do not hard-code crypto algos to the protocol! Use 
suites and negotiation because algos become 
vurnerable due to faster machines (Moore's law)

● Murphy's law: everything that can go wrong, will go 
wrong

– Hackers will find and abuse holes in the design 
and implementations

– The overall strength of the system is as strong 
as its weakest link!



  

Protocol Correctness
● Verify that the protocol “works”

– Implement your own specification!
– Review from other people
– Simulation or emulation
– Mathematical analysis
– Security analysis
– Scalability/performance analysis

● Ready for deployment?

– More difficult to “fix” already deployed 
protocols and implementations

– Future compatibility



  

Deployment Obstacles

● Middlebox traversal

– Does the protocol go through NATs, routers, proxies 
and firewalls?

● NAT traversal

– NATs make protocol engineering difficult

– Legacy NAT devices all work differently

– New transport protocols get dropped

– Tweaking “holes” to NAT boxes

– Referrals don't work

– Counter-measures: TCP/UDP encapsulation, hole 
punching, ICE/STUN or Teredo



  

IETF Standardization

● Why? More reviewers => better security, compatibility, 
deployment, scalability

– Even wizards make errors

– Why not? Standardization takes time

● Open participation, no membership fee

● Process pattern: BoF -> WG -> drafts -> RFC -> close WG

● Rough consensus and running code

– To get an RFC, two interoperable implementations are 
required

● IETF also includes research groups for experimental designs

● IPR: best effort notification about patents

– Watch out for submarines!
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