Computer Graphics

Prof. Jaakko Lehtinen

with lots of material from Freédo Durand

Luxo Jr. (Pixar, 1986)

Plan for Today

- Really, it's a shameless pitch for T-111.4310
-On the side, you'll get an idea of what computer graphics is

Let's name some applications

Movies / Visual Effects (VFX)

T-110.1100 Spring 2013 - Lehtinen - Mar 22

Video Games

Simulation

CAD-CAM \& Design, Advertising

Architecture

Global Illumination in Architecture

- The Light of Mies van der Rohe
-by Henrik Wann Jensen, model by Stephen Duck

Global Illumination

 usingPhoton Mapping

(Virtual Reality)

Scientific Visualization

Medical Imaging

Differences between applications

- Games vs. movies?
- Architectural vs. medical visualization?

Differences between applications

- Games vs. movies?
-Games need real-time performance (30 frames per second, FPS)
-Movie frames usually take hours to render - each
- Architectural vs. medical visualization?
-Building visualization needs accurate simulation of illumination (want to know what it'll look like)
-Medical visualization aims to highlight important features in real-world datasets
- Etc. etc. etc.

What you will learn in T-111.4310

- Fundamentals of computer graphics algorithms
-Will give a pretty good idea of how to implement lots of the things just shown
- We'll concentrate on 3D, not 2D illustration or image processing
- Basics of real-time rendering and graphics hardware
- Basic OpenGL
-Not the focus, though: Means, not the end.
- You will get $\mathrm{C}++$ programming experience
-Most things are written in it IRL

What you will NOT learn

- OpenGL and DirectX hacks
-Most become obsolete every 18 months anyway!
- Software packages
-CAD-CAM, 3D Studio MAX, Maya
-Photoshop and other painting tools
- Artistic skills
- Game design

How much Math?

- Lots of simple linear algebra
-Get it right, it will help you a lot!
- Some more advanced concepts
-Homogeneous coordinates
-Quaternions for interpolating rotations/orientations
-Ordinary differential equations (ODEs) and their numerical solution
-Sampling, antialiasing (some gentle Fourier analysis)
-Monte-Carlo integration
- Always in a concrete and visual context
- Deeper mathematic exposition in advanced class

Prof Background

- (Navel gazing)

IIITIT

REMEDY

Prof Background

- (Navel gazing)
- I taught this class at MIT in 2009, now at Aalto

Fireflies by Blobtrox - Real Time, 4kb code+data (!!)

What was Going on There?

- Monte Carlo solution of the integrodifferential equation that governs light transport in a participating medium ("volume rendering equation")

What was Going on There?

- Monte Carlo solution of the integrodifferential equation that governs light transport in a participating medium ("volume rendering equation")
- Illustrates what I think is so damn cool about graphics - you can use math and algorithms to draw pretty pictures!

How do you make this picture?

Remedy Entertainment / Microsoft Games Studios

How do you make this picture?

- Modeling
- Geometry
- Materials
-Lights

How do you make this picture?

- Modeling
- Geometry
- Materials
-Lights
- Animation
-Make it move

How do you make this picture?

- Modeling
- Geometry
- Materials
-Lights
- Animation
-Make it move
- Rendering
-I.e., draw the picture!
-Lighting, shadows, textures.

How do you make this picture?

- Modeling
- Geometry
- Materials
-Lights
- Animation
-Make it move
- Rendering
-I.e., draw the picture!
-Lighting, shadows, textures.

Modeling/Viewing Pipeline

Meet the Stanford Bunny. He is one of the best-known characters in graphics.

See http://www.cc.gatech.edu/ ~turk/bunny/bunny.html for history.

Modeling/Viewing Pipeline

1.Model the geometry

- Here a triangle mesh
- Also, specify materials

Modeling/Viewing Pipeline

1.Model the geometry

- Here a triangle mesh
- Also, specify materials

Modeling/Viewing Pipeline

1.Model the geometry
2.Place the objects in world space

Object
coordinates
World
coordinates

- Each object has its own object space
- Only one world space

Space \Leftrightarrow Coordinates

Modeling/Viewing Pipeline

1.Model the geometry
2.Place the objects in world space
3.Pick viewing position and direction

Camera
position and
orientation

Object
coordinates
World
coordinates
View
coordinates

Modeling/Viewing Pipeline

1.Model the geometry
2.Place the objects in world space
3.Pick viewing position and direction
4.Transform objects to view space and project to image plane

- Compute shading and draw picture!

Object
coordinates
World
coordinates
View
coordinates Image coordinates

Modeling/Viewing Summary

Modeling/Viewing Summary

- Some algorithms go the same sequence in the opposite direction (e.g. ray tracing)

Modeling/Viewing Summary

Animation:
 Make these transformations vary with time

Another View

Questions?

Coordinate Transformations

- Mostly linear algebra
- Homogeneous coordinates (remember your Kivelä!)
-Neat way of treating affine and perspective transforms as linear
- Perspective (for viewing)

$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}a x+b y+c z+d \\ e x+f y+g z+h \\ i x+j y+k z+l \\ 1\end{array}\right)$
T-110.1100 Spring 2013 - Lehtinen - Mar 22

Modeling

- 2D curves, triangle meshes, smooth surfaces (Bézier, splines), subdivision surfaces

Assignment 1: Curves \& Surfaces

Spline curves

Surfaces of revolution

Sweep surfaces

Animation: Keyframing

FIGURE 3. Squash \& strecch in Luxo Ir's hop.

Character Animation: Skinning

- Animate simple "skeleton"
- Attach "skin" to skeleton
-Skin deforms smoothly with skeleton
- Used everywhere (games, movies)

Ilya Baran

Pinocchio by llya-Baran

- Automatic rigging, used in e.g. Blender

Pinocchio

- This is an example of research done at universities -This particular one, at MIT in Boston
- See Ilya’s SIGGRAPH 2007 paper here

Assignment 2: Hierarchical Modeling

- Animate character skeleton as tree of transformations

- "Skinning": smooth surface deformation based on animated skeleton

Particle systems (ODEs)

"Physics" (ODEs)

- Fire, smoke
- Cloth
- VLC
- Quotes because we do "visual simulation"

Assignment 3: Physics

- Simulate cloth as a mass-spring network
-ODE numerics

Eye Candy: Real-time fluid simulation

Rendering: Ray Casting

- For every pixel
construct a ray from the eye
-For every object in the scene
- Find intersection with the ray

Visibility or "hidden

- Keep if closest surface"
problem

Rendering: Ray Tracing

- Shading: Interaction of light and material
- Secondary rays (shadows, reflection, refraction,

Traditional Ray Tracing

Ray Tracing + Soft Shadows

Ray Tracing + Caustics

Global (Indirect) Illumination

Assignment 4: Ray Casting+Tracing

- Cast rays from the viewpoint
- Intersect with scene primitives
- Compute simple shading

T-110.1100 Spring 2013 - Lehtinen - Mar 22

64

Textures and Shading

Model + Shading

+ Textures

For more info on the computer artwork of Jeremy Birm see bttp///www. 3drender.com/ibirn/productions.html

Normal Map Example

Original Mesh 4M triangles

Normal Map Example

Simplified mesh,

 500 triangles

Simplified mesh + normal mapping

Yes, All This Works

Sampling \& Antialiasing

I-IIU.IIUU Spring <UIS - Lemunerı - ivar \ll

Shadows

Figure 12. Firame from caxo fr.

Figure 13. Shadow maps from Luro ir

The Graphics Pipeline

Ray Casting

For each pixel
For each object
Does object hit pixel?

GPU

For each triangle For each pixel

Does pixel hit triangle?

The Graphics Pipeline

Ray Casting

GPU

For each
 For ϵ
 Sel

Both are ways of

determining what is

visible in each pixel just in different order.

Phew! That's a lot of stuff!

- BUT: Mastering all this takes you a long way towards cool applications!

Little Big Planet

More Research Goodness

- My PhD student Miika Aittala is advancing the state of the art in realistic material appearance capture and rendering
-Highly competitive field
- Video

Questions?

T-111.4310 Prerequisites

- Not strictly enforced
- Calculus, Linear Algebra
-Solving equations, derivatives, integrals
- Vectors, matrices, basis, solving systems of equations
- Optional review/introductory session
- All assignments are in C++
- Optional review/introductory session

Grading Policy

- Assignments: 70\%
-Two-week programming assignments
-Must be completed individually
-No final project
- Midterm Quiz+Final Exam: 25\%
- Participation: 5\%
-Can make a difference to your grade!

Assignments: Scoring

- Fulfill all requirements: you get a 10
-Partial success judged case by case
- All assignments include starter code and detailed instructions, maybe going into more detail than lectures
- Each assignment includes a number of extra credit tasks ranging from easy to possibly very hard
-Open-ended scale

Extra Credit: Why Bother?

- 1st: it's fun!
- 2nd: prizes!
- Fall 2012: Three students with highest total assignment scores got a private tour at Remedy Entertainment, makers of Max Payne, Alan Wake, Death Rally
-Face-to-face with the people who do the games and the tech
- Advanced class (5310), this spring: Final rendering competition prize a very fast GPU donated by NVIDIA - And...

What Makes Graphics Fun?

- You can look at it from several angles
- Anything that looks good will do in many applications...
- Means you can really be creative once you know the basics.
- ...but doing stuff "right" can be really involved.
- Feels pretty nice when all that math and CS gives you a pretty picture or animation!
-There is a continuum in between

That's All Folks!

- Looking forward to seeing you in the fall!

