
The Transport Layer
and Applications
Gralla chapters: 3-4, 17-18,
11-12

2

Transport Layer Protocols

• Provide services to applications
– Network layer (IP) is host to host
– Transport layer is data transport service from one

application to another application
– Additional addressing to the network layer host addresses

• Transport layer entities talk to each other in the
transport layer protocols
– A TCP software implementation (entity) in the kernel of an

operating system talks TCP to another TCP entity

• Provides services to the applications protocols
– TCP: reliable byte stream delivery
– UDP: unreliable datagram delivery

3

UDP

• UDP = User Datagram Protocol

• Defined in RFC-768

• UDP packet syntax

• Port is a 16-bit application identifier number.

• Checksum is calculated over both the header and the data.
UDP checksum is optional.

Data
UDP checksumLength

Destination portSource port

4

…UDP

• UDP datagram is encapsulated into an IP
datagram.

• Unreliable datagram-oriented transportation layer
protocol
– offers little extra functionality besides port numbers
– simple, fast, light-weight, easy to implement

• Applications using UDP: DNS, Radius, NTP,
SNMP, VoIP, streaming media

UDP dataUDP headerIP header

5

A UDP (DNS) Session Snoop
23 riku@mole $ dig a tapas.nixu.fi @194.197.118.20
;; got answer:
;; QUESTIONS:
;; tapas.nixu.fi, type = A, class = IN
;; ANSWERS:
tapas.nixu.fi. 3600 A 194.197.118.24
;; AUTHORITY RECORDS:
nixu.fi. 3600 NS ns2.tele.fi.
nixu.fi. 3600 NS ns.nixu.fi.
nixu.fi. 3600 NS ns.tele.fi.
;; ADDITIONAL RECORDS:
ns2.tele.fi. 35619 A 193.210.19.190
ns.nixu.fi. 3600 A 193.209.237.29
ns.tele.fi. 555991 A 193.210.19.19
ns.tele.fi. 555991 A 193.210.18.18
;; Total query time: 88 msec
;; FROM: mole.nixu.fi to SERVER: 194.197.118.20
;; MSG SIZE sent: 31 rcvd: 175
24 riku@mole $

6

DNS Query, Ethernet Header
ETHER: Packet 1 arrived at 11:19:24.80
ETHER: Packet size = 73 bytes
ETHER: Destination = 8:0:20:74:f1:2c
ETHER: Source = 0:0:3b:80:e:93
ETHER: Ethertype = 0800 (IP)

7

DNS Query, IP Header
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 59 bytes
IP: Identification = 35734
IP: Flags = 0x4 (do not fragment)
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 7e65
IP: Source address = 194.197.118.22
IP: Destination address = 194.197.118.20
IP: No options

8

DNS Query, UDP Header
UDP: Source port = 38325
UDP: Destination port = 53 (DNS)
UDP: Length = 39
UDP: Checksum = E34A

9

DNS Query, Headers and Data
0: 0800 2074 f12c 0000 3b80 0e93 0800 4500
.. t.,..;.....E.
16: 003b 8b96 4000 ff11 7e65 c2c5 7616 c2c5
.;..@...~e..v...
32: 7614 95b5 0035 0027 e34a 000a 0100 0001
v....5.'.J......
48: 0000 0000 0000 0574 6170 6173 046e 6978
.......tapas.nix
64: 7502 6669 0000 0100 0100
u.fi.....

• From now on only relevant portions of the headers
will be displayed

10

DNS Reply Headers

ETHER: Packet size = 217 bytes
ETHER: Destination = 0:0:3b:80:e:93
ETHER: Source = 8:0:20:74:f1:2c
ETHER: Ethertype = 0800 (IP)
IP: Total length = 203 bytes
IP: Flags = 0x4 (do not fragmnet)
IP: Protocol = 17 (UDP)
IP: Header checksum = 8ed6
IP: Source address = 194.197.118.20
IP: Destination address = 194.197.118.22
UDP: Source port = 53
UDP: Destination port = 38325
UDP: Length = 183
UDP: Checksum = AD48

11

DNS Reply Headers and Data

0: 0000 3b80 0e93 0800 2074 f12c 0800 4500
..;..... t.,..E.
16: 00cb 7a95 4000 ff11 8ed6 c2c5 7614 c2c5
..z.@.......v...
32: 7616 0035 95b5 00b7 ad48 000a 8580 0001
v..5.....H......
48: 0001 0003 0004 0574 6170 6173 046e 6978
.......tapas.nix
64: 7502 6669 0000 0100 01c0 0c00 0100 0100
u.fi............
--- some reply data deleted ---
208: 087b db00 04c1 d212 124f
.{.......

12

TCP

• TCP = Transmission Control Protocol
• Defined in RFC-793
• Connection-oriented, reliable, byte-stream service

– Provides one independent byte stream in each direction

• Application data is broken into segments, which
are sent as IP datagrams.

• Features:
– Checksums, timeouts and flow control
– Segment reassembly in correct order, discarding duplicate

packets

• Applications using TCP: SMTP, HTTP (WWW),
NNTP (News),...

13

TCP Segment Format

Data (if any)

Options (if any)
Urgent pointerTCP checksum
Window sizeFlagsReserv.Hdrlen

Acknowledgment number
Sequence number

Destination port numberSource port number

• Ports identify source and destination applications.
• Sequence number identifies the first byte of the segment.

• Acknowledge number is the next expected sequence
number for incoming data.

14

TCP Data Flow

• Receiver sends acknowledgment for each segment.

• If a packet gets lost, timeout will ensure it’s retransmitted

Client Server

waiting
for ack

packet gets lost

retransmission

ACK

15

…TCP Data Flow

• Normally a sliding window technique

• The window size is changeable, default size is around
couple dozen kilobytes depending on the implementation.

Client Server
packet 1
packet 2

packet 3

ACK 1 & 2
ACK 3

waiting
for ack

16

Establishing a TCP Connection

• The “three-way handshake”

Client Server

active
open

passive
open

SYN

SYN + ACK

ACK

17

Closing a TCP Connection

• Either participant may initiate closing the connection
– Client and server are equal in this regard

• Often the application protocol session going over the TCP
connection is closed first

Client Server

FIN

ACK

FIN

ACK

18

Applications Layer

• Applications layer protocols are used by
applications to talk to each other
– Data is transported over the transport layer (TCP or UDP)
– To an application these look almost like a file

– At least in the C language
– Different environments may define different interfaces

for applications

• We introduce the protocols used by WWW and e-
mail
– WWW and e-mail are services to the user, they use

several protocols to implement the service

19

HTTP

• Application-level protocol for distributed,
collaborative, hypermedia information systems.

• Used by Web browsers to communicate with
WWW servers.

• Generic, stateless, object-oriented

20

HTTP Communication (Client)

• Client (browser) opens a TCP connection to an HTTP server
(e.g. Apache)
– By default to port 80

• Client decodes the URL: http://www.nixu.fi:8080/
– "http": use HTTP protocol
– "//": absolute URL
– "www.nixu.fi": the host name of the WWW server
– ":8080": use port 8080

• Client translates the host name to an IP address by using
DNS

• Client opens an TCP connection to the server

• Client sends a request line, some request headers and a
blank line to server

21

HTTP Communication (Server)

• Server sends a response line, some response
headers, a blank line and a document and closes
the connection (on HTTP/1.1 connection is not
closed)

• Every object on a page is requested separately.
– HTML page with 3 pictures ->

– with HTTP/1.0 four separate requests and connections.
– HTTP/1.1 four requests over one connection

• Server response may be HTML, graphics, audio,
VRML, Java...
– Depends on what file formats the browser supports

22

Example
1 bash-2.03$ telnet www.nixu.fi 80
2 Trying...

3 Connected to jalopeno.nixu.fi.

4 Escape character is ’^]’.

5 HEAD / HTTP/1.0
6

7 HTTP/1.1 200 OK

8 Date: Mon, 12 Apr 1999 10:26:06 GMT

9 Server: Apache/1.2.6

10 Last-Modified: Fri, 26 Feb 1999 15:28:20 GMT

11 Connection: close

12 Content-Type: text/html

13

14 Connection closed.

15 bash-2.03$

23

HTTP Response Status Line
HTTP/Version Status-Code Reason-Phrase

Status-Code categories
1xx: Informational - Not used, reserved for future use
2xx: Success - Action was successfully received,

understood, and accepted.
3xx: Redirection - Further action must be taken in order to

complete the request
4xx: Client Error - Request contains bad syntax or cannot be

fulfilled
5xx: Server Error - Server failed to fulfill an apparently valid

request

• These enable various needed features for
communication from server to client

24

Predefined Status Codes
(HTTP/1.1)

• "200" ; OK

• "201" ; Created

• "202" ; Accepted

• "203" ; Non-Authoritative Information

• "301" ; Moved Permanently

• "400" ; Bad Request

• "404" ; Not Found

• "500" ; Internal Server Error

• "505" ; HTTP Version not supported

25

What Is a Protocol?

• A protocol is an accepted method for two or more
entities to talk to each other
– In the case of HTTP there is a human readable but formal

definition of certain codes and phrases
– Extensible, allows introducing new versions and

features
– Relatively easy to debug for humans

– TCP is a fixed binary format protocol
– More efficient for software to process
– Not human readable

• A protocol should be un-ambiguous and able to
withstand all natural disturbances
– Especially should not deadlock or get unsynchronized

between the two endpoints

26

Internet E-Mail

• E-mail messages are transmitted over the Internet
using the SMTP protocol
– Simple Mail Transfer Protocol

• SMTP e-mail server receives a message and
stores it to disk
– After the message is stored, the server tries to contact

next server and transmit the message forward to it
– An SMTP server acts both as a server and as a client

• The message ends up in a file in the final server,
where it is read by a e-mail program locally or over
the network with some e-mail retrieval protocol

27

SMTP-protocol

• “Push protocol”, i.e. sender initiates
• Server is at TCP port 25
• Currently undeliverable messages can (and

should) be queued
• RelatedStandards

– RFC2821: Defines transfer-protocol
– RFC2822: Defines message-form

– These are updated by many other RFCs
– RFC 1123: Internet Host Requirements
– RFC 1870, 2821: SMTP Service Extensions
– RFC 1891-1895: Even more extensions, now obsoleted by

newer RFCs
– RFCs 2045-2049: MIME

28

Mail Agents

• Mail User Agents
– MUAs are the source and destination of e-mail
– Pine, Microsoft Outlook, MH, Mozilla, Elm, mail,

Thunderbird, etc.

• Mail Transfer Agents
– MTAs transport and route the messages from the sender’s

MUA to the recipient’s MUA
– This is applications level routing and similar to but not

related to IP-routing
– The decision is made based on the recipient’s address

– Spam blocking is an exception
– The recipient’s address may be changed

– E.g. e-mail aliases, .forward

29

The e-Mail Message’s Journey

• The message in the SMTP-standard consists of two parts
– The envelope is information transmitted using SMTP protocol

units
– The contents includes the headers and body of the message

• The MUA receives the message from the end user and
interprets the correct sender and receiver information

• The message is passed to the MTA for transportation over
the network
– Usually the message is first stored in a spool directory to wait

until it can be transmitted to the next MTA
– At the destination the message is placed into the recipient’s

mailbox
– usually a file, can also be a directory or a database

• In practice the distinction between modern MTA and MUA
software is not always clear

30

How the Mail Travels

Sender Sender's
local server

Receiver

Host sends
e-mail using
SMTP

Server forwards
mail using SMTP

Client retrieves
mail using POP
or IMAP

Receiver's
local server

31

Sample SMTP Session Initiation
18 riku@mole $ telnet nixu-gw.nixu.fi 25
Trying 194.197.118.1...
Connected to nixu-gw.nixu.fi.
220 nixu-gw.nixu.fi ESMTP Sendmail 8.9.3/8.9.3; Tue, 13 Apr 1999 13:40:05 +0300
HELP
214-This is Sendmail version 8.9.3
214-Topics:
214- HELO EHLO MAIL RCPT DATA
214- RSET NOOP QUIT HELP VRFY
214- EXPN VERB ETRN DSN
214-For more info use "HELP <topic>".
214-To report bugs in the implementation send email to
214- sendmail-bugs@sendmail.org.
214-For local information send email to Postmaster.
214 End of HELP info
EHLO mole.nixu.fi
250-nixu-gw.nixu.fi Hello mole.nixu.fi [194.197.118.22], pleased to meet you
250-8BITMIME
250-SIZE
250-DSN
250-XUSR
250 HELP

32

Sending the Message in SMTP
MAIL From: <riku@mole.nixu.fi>
250 <riku@mole.nixu.fi>... Sender ok
RCPT To: <Timo.Kiravuo@nixu.fi>
250 <Timo.Kiravuo@nixu.fi>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
From: <riku@mole.nixu.fi>
To: <Timo.Kiravuo@nixu.fi>
Subject: foobar
Demo material for SMTP course
.
250 NAA12630 Message accepted for delivery
QUIT
221 nixu-gw.nixu.fi closing connection
Connection closed by foreign host.
19 riku@mole $

33

The Message Structure

• The envelope contains the MTA’s view of the
sender and receiver
– This is why you receive complaints about viruses and

spam you have not sent
– These are transported in the MAIL FROM and RCPT TO

commands of the SMTP protocol
– Notice the difference between the "From:" in the message

headers and the "From" in the envelope

• Headers
– From the beginning of the content until the first empty line
– Format is "field-name: field body"
– Some are mandatory, some not

• Body
– After first empty line until the end of the message

34

SMTP and DNS

• MXs
– Mail eXchanger - records in DNS
– Enables mail forwarding in cases where access to

customers mail-server is limited
– Example: part of sral.fi MXs

sral.fi. IN MX 10 bar.foo.fi.
sral.fi. IN MX 20 smtp3.kolumbus.fi.

• Logic: Mail is transferred only closer to destination
– Smaller MX value means that machine is closer to

destination
– Machine with the smallest MX value is tried first, then the

machine with the next smallest and so on...
– If no MX record, A record (IP address) is used

35

POP and IMAP Mail Read

• Post Office Protocol

• Internet Message Access Protocol

• An e-mail client program contacts a POP or IMAP
server and asks for new e-mail for an user-ID

36

Multipurpose Internet Mail
Extensions

• A standard to use in e-mail
– Text other than US-ASCII
– Non-textual data formats
– Multipart messages
– Textual header information using characters other than US-

ASCII

• Several standards and extensions
– 2045 MIME Part One: Format of Internet Message Bodies
– 2046 MIME Part Two: Media Types
– 2047 MIME Part Three: Message Header Extensions for Non-

ASCII Text
– 2048 MIME Part Four: Registration Procedures
– 2049 MIME Part Five: Conformance Criteria and Examples

• MIME types are also used by other protocols and services
– E.g. HTTP

37

MIME Message (Simplified)
FROM: "MS Security Center" <aytnddhiqp@support_msdn.net>
TO: "Partner" <partner@support_msdn.net>
SUBJECT: Current Net Security Patch
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary="dqrvzwnprd"

--dqrvzwnprd
Content-Type: multipart/related;

boundary="jtdukndxczlsbnv";
type="multipart/alternative"

--jtdukndxczlsbnv
Content-Type: text/plain
Content-Transfer-Encoding: quoted-printable

Microsoft Partner

this is the latest version of security update, the...

38

MIME Message (Cont.)
--jtdukndxczlsbnv
Content-Type: text/html
Content-Transfer-Encoding: quoted-printable

<HTML>...
--jtdukndxczlsbnv--
--dqrvzwnprd
Content-Type: image/gif
Content-Transfer-Encoding: base64

R0lGODlhaAA7APcAAP///+rp6puSp6GZrDUjUUc6Zn53mFJMdb...

--dqrvzwnprd
Content-Type: application/x-msdownload;

name="Install65.exe"
Content-Transfer-Encoding: base64

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAA...
--dqrvzwnprd--

39

MIME

• The body of the message can contain multiple data objects
• Some objects can be alternative to each other

– E.g. text and HTML representation for the message text
– The sender can not know the capabilities of the receiver’s MUA

• Binary data is coded so that it can pass through the 7-bit e-
mail system
– Some SMTP protocol implementations can not handle 8-bit data
– Base-64 is usually used for binary data
– Quoted-printable is used to encode the individual special

characters in text data

• Headers have their own coding
From: =?GB2312?B?za/R1cHB18s=?=
<info@shanghaity.com>

Subject: =?GB2312?B?za/R1cHB18vT68T6ubK2ybn6x+w=?=

40

Spam

• Unsolicited advertising
– A real problem because of huge volume (100-200

messages per day)

• Usually sent from an e-mail server that allows
relaying
– The server accepts a message, that is not from a domain

served by the server and is not targeted towards such
domain

– Spam senders usually falsify the sender address
– The server used receives one message with plenty or

recipients and it has to bear the burden of delivery

41

Solutions to Combat Spam

• Basic checks
– The e-mail server should verify that either the sender or receiver

address of a message matches the server’s domains
– This prevents a lot of relaying

– Sending host’s IP address should have a reverse DNS record

• Server blacklists
– Known servers that send or relay spam

• Bayesian (artificial intelligence) filtering
– The system learns to recognize spam
– Currently considered a promising approach

• Legal solutions

• For more information see http://spam.abuse.net/

42

Application Level Protocols

• Applications handle different kinds of content
– e.g.. e-mail, web pages, voice

• Different types of content require different kinds of protocols

• Application level protocols
– Transfer the application’s content (application specific behavior)
– Transfer information about the capabilities of the participants
– Use lower layer protocols to avoid doing unnecessary work

• OSI model’s session, presentation and application layers are
combined to one layer in the TCP/IP model

43

Network Relations

• The network entities use different behavioral
models on all protocol layers
– Client-Server
– Peer to peer
– Middleware
– Store and Forward
– Connections
– Connectionless communication

44

Client-Server Communications
Model

• Examples:
– A WWW client connects to a WWW server and requests a

document
– Xeyes program requests the X server for information about

mouse cursor position

• Client is the active participant

• Sessions are initiated by the client

• Server is passive and waits for contact

• Client-server model is usually used to distribute
data or CPU

45

Thin and Fat Clients

• These terms do not refer to the communications logic, but
instead to the software architecture

• The client can be a simple user interface manager
– E.g. WWW-client
– The applications logic is in the server

• Or an application specific program capable of complex data
processing operations
– The applications logic is mostly in the client and the server is

usually mostly a database server

• The difference in communications is between I/O (display)
information and between raw data

• The current trend is towards thin clients and servers that
provide the application logic and data

46

Peer to Peer Architectures

• P2P does not distinguish clients and servers,
instead all entities can communicate with each
other

• In practice many P2P implementations combine
both client and server behavior in the same
application

• The most interesting question in P2P is how to
find the information/service sought after
– Directory servers (breaking the P2P model)
– Identifiers and search algorithms

– Participants transfer information about what they can
supply

47

Middleware
• Middleware is a term, which meaning depends on context
• In the client-server model middleware means usually

software that implements the business logic
– Middleware is connected to the user’s thin client at one end and

to a database at the other end
– Typically different protocols are used

– E.g. HTTP for the client and SQL*Net for the database
• Middleware can also mean a layer between the actual

application and the communications layer (TCP & IP)
– Provides e.g. AAA services, database access

• The interaction models between various parties are usually
of client-server type
– The user initiates actions from the web client, which the

middleware translates to database queries and data processing
– However actual business applications may break this pure model

– E.g. the server sends a notification to the client

48

Store and Forward

• A message is stored until it can be forwarded

• Example:
– An IP router stores an IP packet in its memory, until the next link

is available for transmission
– SMTP e-mail server receives a message and stores it to disk,

after the message is stored, server tries to contact next server
and transmit the message forward to it
– An SMTP server acts both as a server and as a client

• Store and forward makes packet networks efficient and allow
discarding the requirement for reserving bandwidth
– Memory provides a buffer
– If we run out of memory

– An IP router discards packets
– An SMTP server refuses to accept more data

49

Connection

• Examples:
– An user connects to a Unix server from a PC using Telnet

protocol
– A WWW client program connects to a WWW server using

HTTP protocol over TCP protocol and stays connected
until all the elements of a WWW page are received
– Two connections at different protocol levels, TCP and

HTTP

• In a connection both ends share a state
– The IP layer is not aware of a connection

• A connection can be broken by network fault

50

Connectionless Data Transfer

• Examples:
– A DNS resolver sends a DNS server a UDP packet,

containing a DNS query
– A network management station queries routers using

SNMP packets in UDP packets, if no reply is received
after retries, a notification is generated

• In connectionless data transfer the entities
transferring information are responsible of
knowing the status of communication
– A DNS server does not care
– The DNS resolver must retry if the query or reply are lost

(UDP is defined as unreliable) or if server is down

• Avoids the setup cost of a connection

51

What Do the Protocols Do?

• Protocols are the language different network
entities use to talk to each other
– Windows Netscape can send e-mail to a Sendmail

program running on Unix operating system, because they
talk same language

– A method sufficiently understood by two entities so that
they can communicate

– Formal definition preferred

• Internet protocols provide layers of abstraction
and higher level protocols rely on lower protocols
to operate together

