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Guest Lecturer

I Guest Lecturer: Assoc. Prof. Keijo Heljanko, Department
of Computer Science, Aalto University

I Email: keijo.heljanko@aalto.fi
I Homepage:
http://people.aalto.fi/keijo_heljanko

I For more info into today’s topic, attend the course:
“CSE-E5430 Scalable Cloud Computing”

http://people.aalto.fi/keijo_heljanko
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Business Drivers of Cloud Computing

I Large data centers allow for economics of scale
I Cheaper hardware purchases
I Cheaper cooling of hardware

I Example: Google paid 40 MEur for a Summa paper mill site
in Hamina, Finland: Data center cooled with sea water from
the Baltic Sea

I Cheaper electricity
I Cheaper network capacity
I Smaller number of administrators / computer

I Unreliable commodity hardware is used
I Reliability obtained by replication of hardware components

and a combined with a fault tolerant software stack
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Cloud Computing Technologies
A collection of technologies aimed to provide elastic “pay as
you go” computing

I Virtualization of computing resources: Amazon EC2,
Eucalyptus, OpenNebula, Open Stack Compute, . . .

I Scalable file storage: Amazon S3, GFS, HDFS, . . .
I Scalable batch processing: Google MapReduce, Apache

Hadoop, PACT, Microsoft Dryad, Google Pregel, Spark, . . .
I Scalable cloud datastores (NoSQL databases): Amazon

Dynamo, Riak, Apache Cassandra, Google Bigtable,
HBase,. . .

I Distributed Coordination Services: Google Chubby,
Apache Zookeeper, . . .

I Scalable Web applications hosting: Google App Engine,
Microsoft Azure, Heroku, . . .
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Clock Speed of Processors

I Herb Sutter: The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal, 30(3),
March 2005 (updated graph in August 2009).
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Implications of the End of Free Lunch

I The clock speeds of microprocessors are not going to
improve much in the foreseeable future

I The efficiency gains in single threaded performance are
going to be only moderate

I The number of transistors in a microprocessor is still
growing at a high rate

I One of the main uses of transistors has been to increase
the number of computing cores the processor has

I The number of cores in a low end workstation (as those
employed in large scale datacenters) is going to keep on
steadily growing

I Programming models need to change to efficiently exploit
all the available concurrency - scalability to high number of
cores/processors will need to be a major focus
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Dark Silicon - End of Moore’s law in Sight?

I Even worse news ahead, computing will be hitting a wall:
Silicon is becoming energy constrained

I We will have much more transistors than what we can
switch on and off at each clock cycle

I This is called: Dark Silicon
I For implications of dark silicon, see:

I Hadi Esmaeilzadeh, Emily R. Blem, Rene St. Amant,
Karthikeyan Sankaralingam, Doug Burger: Dark Silicon and
the End of Multicore Scaling. IEEE Micro 32(3): 122-134
(2012)

I Michael B. Taylor: A Landscape of the New Dark Silicon
Design Regime. IEEE Micro 33(5): 8-19 (2013)
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Tape is Dead, Disk is Tape, RAM locality is King

I Trends of RAM, SSD, and HDD prices. From: H. Plattner and A.
Zeier: In-Memory Data Management: An Inflection Point for
Enterprise Applications
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Tape is Dead, Disk is Tape, RAM locality is King

I RAM (and SSDs) are radically faster than HDDs: One
should use RAM/SSDs whenever possible

I RAM is roughly the same price as HDDs were a decade
earlier

I Workloads that were viable with hard disks a decade ago
are now viable in RAM

I One should only use hard disk based storage for datasets
that are not yet economically viable in RAM (or SSD)

I The Big Data applications (HDD based massive storage)
should consist of applications that were not economically
feasible a decade ago using HDDs
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Bump in Kryder’s Law since 2010

I Preeti Gupta, Avani Wildani, Ethan L. Miller, Daniel C.
Rosenthal, Ian F. Adams, Christina E. Strong, Andy
Hospodor: An Economic Perspective of Disk vs. Flash
Media in Archival Storage. MASCOTS 2014: 249-254
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Scaling Up vs Scaling Out

I Scaling up: When the need for parallelism arises, a single
powerful computer is added with more CPU cores, more
memory, and more hard disks

I Scaling out: When the need for parallelism arises, the task
is divided between a large number of less powerful
machines with (relatively) slow CPUs, moderate memory
amounts, moderate hard disk counts

I Scalable cloud computing is trying to exploiting scaling out
instead of scaling up
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Pros and Cons of Scaling Up vs Scaling Out

I Scaling up is more expensive than scaling out. Big
high-end systems have much higher pricing for a given:
CPU power, memory, and hard disk space

I Scaling out is more challenging for fault tolerance. A large
number of loosely coupled systems means more
components and thus more failures in hardware and in
networking. Solution: Software fault tolerance

I Scaling out is more challenging for software development
due to larger number of components, larger number of
failures both in nodes and networking connecting them,
and increased latencies. Solution: Scalable cloud
platforms
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Warehouse-scale Computing (WSC)

I The smallest unit of computation in Google scale is:
Warehouse full of computers

I [WSC]: Luiz André Barroso, Urs Hölzle: The Datacenter as
a Computer: An Introduction to the Design of
Warehouse-Scale Machines Morgan & Claypool
Publishers 2009
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

I The WSC book says:
“. . . we must treat the datacenter itself as one massive
warehouse-scale computer (WSC).”

http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006
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Cloud Datastores (NoSQL Databases)

I Quite often the term Datastore is used for database
systems developed for the cloud, as they often do not fully
support all features of traditional relational databases
(RDBMS)

I Other term used often is NoSQL databases, as the original
systems did not support SQL. However, some SQL
support is getting added also to cloud datastores, so the
term is getting outdated quite fast

I The cloud datastores can be grouped by many
characteristics
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Database ACID guarantees

A traditional (centralized) database can guarantee its client
ACID (atomicity, consistency, isolation, durability) properties:

I Atomicity: Database modifications must follow an ”all or
nothing” rule. Each transaction is said to be atomic. If one
part of the transaction fails, the entire transaction fails and
the database state is left unchanged.

I Consistency (as defined in databases): Any transaction the
database performs will take it from one consistent state to
another.

I Isolation: No transaction should be able to interfere with
another transaction at all.

I Durability: Once a transaction has been committed, it will
remain so.
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Consistency & Availability in Distributed
Databases

We define the three general properties of distributed databases
popularized by Eric Brewer:

I Consistency (as defined by Brewer): All nodes have a
consistent view of the contents of the (distributed)
database

I Availability: A guarantee that every database request
eventually receives a response about whether it was
successful or whether it failed

I Partition Tolerance: The system continues to operate
despite arbitrary message loss
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Brewer’s CAP Theorem

I In a PODC 2000 conference invited talk Eric Brewer made
a conjecture that it is impossible to create a distributed
asynchronous system that is at the same time satisfies all
three CAP properties:

I Consistency
I Availability
I Partition tolerance

I This conjecture was proved to be a Theorem in the paper:
“Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51-59, 2002.”
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Brewer’s CAP Theorem

Because it is impossible to have all three, you have to choose
between two of CAP:

I CA: Consistent & Available but not Partition tolerant
I A non-distributed (centralized) database system

I CP: Consistent & Partition Tolerant but not Available
I A distributed database that can not be modified when

network splits to partitions
I AP: Available & Partition Tolerant but not Consistent

I A distributed database that can become inconsistent when
network splits into partitions
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Example CA Systems

I Single-site (non-distributed) databases
I LDAP - Lightweight Directory Access Protocol (for user

authentication)
I NFS - Network File System
I Centralized version control - Svn
I Hadoop Distributed Filesystem: HDFS Namenode

These systems are often based on two-phase commit
algorithms, or cache invalidation algorithms.
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Example CP Systems

I Distributed datastores - Example: Google Bigtable,
Apache HBase

I Distributed coordination systems - Example: Google
Chubby, Apache Zookeeper

The systems often use a master copy location for data
modifications combined with pessimistic locking or majority
(aka quorum) algorithms such as Paxos by Leslie Lamport.
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Example AP Systems

I Filesystems allowing updates while disconnected from the
main server such as AFS and Coda.

I Web caching
I DNS - Domain Name System
I Distributed version control system - Git
I “Eventually Consistent” Datastores - Amazon Dynamo,

Apache Cassandra, Riak

The employed mechanisms include cache expiration times and
leases. Sometimes intelligent merge mechanisms exists for
automatically merging independent updates.
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Scalable Cloud Data Store Features

A pointer to comparison of the different cloud datastores is the
survey paper: “Rick Cattell: Scalable SQL and no-SQL Data
Stores, SIGMOD Record, Volume 39, Number 4, December
2010”.
http://www.sigmod.org/publications/
sigmod-record/1012/pdfs/04.surveys.cattell.pdf

http://www.sigmod.org/publications/sigmod-record/1012/pdfs/04.surveys.cattell.pdf
http://www.sigmod.org/publications/sigmod-record/1012/pdfs/04.surveys.cattell.pdf
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Scalable Cloud Data Store Features (cnt.)

The Cattell paper lists some key features many of these new
datastores include (no single system contains all of these!):

I The ability to horizontally scale “simple operation”
throughput over many servers

I The ability to automatically replicate and to distribute
(partition/shard) data over many servers

I A simple call level interface or protocol (vs SQL)
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Scalable Cloud Data Store Features (cnt.)

I A weaker concurrency model than the ACID transactions
of most relational (SQL) database systems

I Efficient use of distributed indexes and RAM for data
storage

I The ability to dynamically add new attributes to data
records (no fixed data schema)
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A Grouping of Data Stores - Key-value Stores

I Key-value stores
I Examples: Project Voldemort, Redis, Scalaris, Riak,

Apache Cassandra (partially)
I A unique primary key is used to access a data item that is

usually a binary blob, but some systems also support more
structured data

I Quite often use peer-to-peer technology such as distributed
hash table (DHT) and consistent hashing to shard data and
allow elastic addition and removal of servers
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A Grouping of Data Stores - Key-value Stores(cnt

I Key-value stores (cnt.)
I Some systems use only RAM to store data (and are used

as memcached replacements), others also persist data to
disk and can be used as persistent database replacements

I Most systems are AP systems but some (Scalaris) support
local row level transactions

I Cassandra is hard to categorize as it uses DHT, is an AP
system, but has a very rich data model
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A Grouping of Data Stores - Document Stores

I Document Stores
I Examples: Amazon SimpleDB, CouchDB, MongoDB
I For storing structured documents (think, e.g., XML)
I Do not usually support transactions or ACID semantics
I Usually allow very flexible indexing by many document

fields
I Main focus on programmer productivity, not ultimate data

store scalability
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A Grouping of Data Stores - Extensible Record
Stores

I Extensible Record Stores (aka “BigTable clones”)
I Examples: Google BigTable, Google Megastore, Apache

HBase, Hypertable, Apache Cassandra (partially)
I Google BigTable paper gave a new database design

approach that the other systems have emulated
I BigTable is based on a write optimized design: Read

performance is sacrificed to obtain more write performance
I Other notable features: Consistent and Partition tolerant

(CP) design, Automatic sharding on primary key, and a
flexible data model (more details later)
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A Grouping of Data Stores - Scalable Relational
Systems

I Scalable Relational Systems (aka Distributed Databases)
I Examples: MySQL Cluster, VoltDB, Oracle Real Application

Clusters (RAC)
I Data sharded over a number of database servers
I Usually automatic replication of data to several servers

supported
I Usually SQL database access + support for full ACID

transactions
I For scalability joins that span multiple database servers or

global transactions should not be used by applications
I Scalability to very large (100+) database servers not

demonstrated yet but there is no inherent reason why this
could not be done
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Eventual Consistency / BASE

I The term “Eventually Consistent” was popularized by the
authors of Amazon Dynamo, which is a datastore that is an
AP system - accessible and partition tolerant

I Also the term BASE (basically available, soft state,
eventually consistent) is a synonym for the same approach

I Basically these are datastores that value accessibility over
data consistency

I Quite often they offer support to automatically resolve
some of the inconsistencies using e.g., version numbering
or CRDTs - Commutative Replicated Data Types

I Example systems: Amazon Dynamo, Riak, Apache
Cassandra
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RDBMS Supporter View

I RDBMS can do everything the scalable cloud data stores
can do with similar scalability when used properly

I SQL is a convenient expressive declarative query language
I RDBMS have 30 years of engineering experience put into

them and are highly tuned
I There are a very large number of specialized RDBMS for

various application domains (interactive vs. analytics, RAM
vs. disk based data, etc.)

I A standardization around relational schema and SQL
brings benefits in design and training, where same set of
skills can be effectively employed with another RDBMS
system
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RDBMS Opponent View
I The RDBMS vendors have not demonstrated scalability

matching that of the newly architected scalable cloud data
stores (e.g., BigTable)

I Primary key lookup is more easy to understand than SQL,
and thus enables a much lower learning curve

I RDBMS force data schema on applications unnecessarily
I SQL makes it “too easy” to write expensive queries by

accident such as complicated joins involving many tables
and several servers. If these expensive operations are
removed from the query language, the complexity of a
query evaluation becomes obvious to the programmer

I RDBMS systems have become dinosaurs in their 30 year
rule of the database market, and the (hardware)
assumptions on which they have been built are obsolete
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Scalable Data Stores - Future Speculation

I Long running serializable global transactions are very hard
to implement efficiently, for scalability they should be
avoided at all costs. Counterexamples: Google Percolator,
Google Spanner/F1

I The requirements of low latency and high availability make
AP solutions attractive but they are more difficult to use for
the programmer (need to provide application specific data
inconsistency recovery routines!) than CP systems

I The time of “one size fits all”, where a RDBMS was a
solution to all datastore problems has passed, and
scalable cloud data stores are here to stay
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Scalable Data Stores - Future Speculation (cnt.)

I ACID transactions are needed for, e.g., financial
transactions, and there traditional RDBMS will be dominant

I Many of the new systems are not yet proven in production
I There will be a consolidation to a smaller number of data

stores, once the “design space exploration” settles down
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BigTable

I Described in the paper: “Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael
Burrows, Tushar Chandra, Andrew Fikes, Robert E.
Gruber: Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26(2): (2008)”

I A highly scalable consistent and partition tolerant datastore
I Implemented on top of the Google Filesystem (GFS)
I GFS provides data persistence by replication but only

supports sequential writes
I BigTable design does no random writes, only sequential

writes are used
I Open source clone: Apache HBase
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BigTable

I Sequential writes are much faster than random writes for
modern hard disks

I BigTable is a write optimized design: Writes are optimized
over reads

I The random reads that miss the DRAM cache used are
slower than in traditional RDBMS

I The design also minimizes the number of bytes written by
using efficient logging and compression of data. Also a
good design principle for Flash SSD use
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BigTable Data Model

I Bigtable paper describes itself as: ”. . . a sparse,
distributed, persistent multi-dimensional sorted map”

I Namely, BigTable stores data as strings, which can be
accessed by three coordinates:

I row - an arbitrary string row key (10-100 bytes typical, max
64 KB)

I column - a column key, consisting of a column family and
column qualifier (name) in syntax family:qualifier

I timestamp - a 64 bit integer that can be used to store a
timestamp

I Thus we have a map with three coordinates:
(row:string, column:string, time:int64) ->
string
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BigTable Data Layout

I In BigTable data is stored sorted by the row key, and the
data is automatically sharded by the row key, allowing for
efficient scans in increasing alphabetical row key order

I Columns are grouped in “Column families”, and all
columns in a single column family are stored together in
compressed form on disk

I Some queries might not access columns in all column
families, and this allows data in these column families to be
easily skipped for such queries

I The timestamp field allows applications to store several
copies of the same data together, e.g., Website content
changes over time
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BigTable Atomicity Guarantees

I Each row in BigTable can have a different number of
columns

I Some rows might have thousands or even many more
columns

I BigTable atomicity guarantee: Updates to a single row are
atomic, irregardless of the number of column families or
columns being updated

I No transactions for updating multiple rows atomically are
available
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BigTable Write Path
I When BigTable Tablet server receives a write, it first

commits it to a commit log on GFS
I After the commit, write is added to memtable
I Once memtable fills up, all written data is sorted in

memory, and stored into a sorted indexed SSTable on
GFS, and the commit log file can be removed
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BigTable Conclusions

I BigTable is a scalable write optimized database design
I It uses only sequential writes for improved write

performance
I Requires periodic compactions to reduce the number of

SSTable files and maintain reasonable read performance
I For read intensive workloads BigTable can be a good fit if

all of the working set fits into DRAM
I For read intensive working sets much larger than DRAM,

traditional RDBMS systems are still a better match
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Apache HBase

I Apache HBase is an open source Google BigTable clone
I It very closely follows the BigTable design but has the

following differences
I Instead of GFS, HBase runs on top of HDFS
I Instead of Chubby, HBase uses Apache Zookeeper
I SSTable of BigTable are called in HBase HFile (and HFile

V2)
I HBase only partially supports fully memory mapped data
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Facebook Messaging on HBase

I In the paper “Dhruba Borthakur, Jonathan Gray, Joydeep
Sen Sarma, Kannan Muthukkaruppan, Nicolas
Spiegelberg, Hairong Kuang, Karthik Ranganathan,
Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo
Schmidt, Amitanand S. Aiyer: Apache Hadoop goes
realtime at Facebook. SIGMOD Conference 2011:
1071-1080” authors from Facebook describe the
infrastructure behind Facebook messaging

I 500 million users, several Petabytes of data
I 135 000 000 000 messages per month
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Apache Cassandra

I Apache Cassandra is a cloud datastore that values low
latency and availability over consistency

I Developed originally by Facebook, now also commercially
supported by Datastax

I Runs behind many massive Websites: Example - Netflix
I It uses a BigTable-like data model and a write optimized

storage engine based on SSTables
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Apache Cassandra
I Apache Cassandra is maybe the closest open source

project in spirit to Amazon Dynamo
I Low latency and availability over consistency
I Developed originally by Facebook, now also commercially

supported by Datastax
I Runs behind many massive Websites: Example - Netflix
I It uses a BigTable-like data model and a write optimized

storage engine based on SSTables
I Otherwise its design resembles that of Dynamo:

I Quorum reads and writes with configurable N, W , and R
I No vector clocks available! Automatic merging of conflicting

versions during reads using “read repair”, where the data
item with the largest timestamp value wins!!! (mutating data
stored in Cassandra can be dangerous without proper
care!)
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Riak
I Another widely used AP datastore
I Just key-values, not wide rows like in Bigtable or

Cassandra
I Uses consistent hashing
I Last write wins (LWW) by default, this is dangerous for

mutating data!
I Implements vector clocks, which makes updating data

easier by making full custom merge functions easier to
write

I Implements Commutative Replicated Data Types - CRDTs,
allowing fylly automatic merging for certain data types with
limited operations

I Also runs large systems in production, is commercially
supported by Basho
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Programmer Hints for AP Datastores
1. Hint: Write once-read many: If data is written only once,

there can not be two conflicting versions of the data
2. Hint: If you mutate data, do not use “last-write-wins” - it is

an unsafe default, and can result in data loss
3. Hint: If you have to mutate data, use Commutative

Replicated Data Types CRDTs, either supported by the
datastore, or roll your own on top of vector clocks, if the
datastore does not support CRDTs

4. Hint: Not all data types can be turned into CRDTs
(example: set with both add and delete operation can not!),
for these data types use a CP datastore instead!

Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.:
A comprehensive study of Convergent and Commutative
Replicated Data Types. app. Rech. 7506, Institut National de la
Recherche en Informatique et Automatique (INRIA), 2011
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Testing Cloud Datastores

I Many cloud datastores can lose data, see:
http://aphyr.com/tags/jepsen

I Examples:
I Broken protocol design: Redis, NuoDB, Elasticsearch
I Protocol bugs that have been fixed: etcd
I Trying to be AP and CP at the same time: MongoDB,

RabbitMQ
I Users naively using last-write-wins that is on by default:

Riak, Cassandra
I Default options that can result in data loss: MongoDB
I Missing a CP configuration option: Kafka, added in newer

versions

http://aphyr.com/tags/jepsen
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Distributed Coordination Services

I Maintaining a global database image under node failures is
a very subtle problem, see e.g.: “Michael J. Fischer, Nancy
A. Lynch, Mike Paterson: Impossibility of Distributed
Consensus with One Faulty Process, J. ACM 32(2):
374-382 (1985)”

I The Paxos algorithm is a very subtle algorithm that will be
able to replicate a distributed database if enough (majority
of the set of) servers are up and able to communicate with
each other



NoSQL Databases - Keijo Heljanko (keijo.heljanko@aalto.fi)

50/50

Distributed Coordination Services (cnt.)

I From an applications point of view the distributed
coordination services should be used to store global
shared state: Global configuration data, global locks, live
master server locations, live slave server locations, etc.

I One should use centralized infrastructure such as Google
Chubby or Apache Zookeeper to only implement these
tricky fault tolerance algorithms only once


