Example solution: decomposing a solution into set of relations which are in BCNF

This is an example solution which shows what is demanded to get full points from an exercise or exam problem which asks to justify why a given relation is not in BCNF and to decompose it into set of relations which are in BCNF. Please note that only one of the possible solutions is presented below (instead of using the second closure, it is possible to do the first decomposition by using the first or the third closure).

Problem

Consider a relation R with schema $R(A, B, C, D, E)$ and functional dependencies $A \rightarrow B, B \rightarrow D E$, and $C \rightarrow E$. Explain why this relation is not in Boyce-Codd normal form (BCNF). Decompose the relation using the BCNF decomposition algorithm taught in this course and in the text book. Give a short justification for each new relation. Continue the decomposition until the final relations are in BCNF. Explain why the final relations are in BCNF.

Solution

- Calculate the closures of the left sides of the dependencies:

$$
\begin{aligned}
\{A\}^{+} & =\{A, B, D, E\} \\
\{B\}^{+} & =\{B, D, E\} \\
\{C\}^{+} & =\{C, E\}
\end{aligned}
$$

- If R were in BCNF, all given closures should contain all attributes of R. Because none of them does, none of the left sides of the given dependencies is superkey of R and R is not in BCNF.
- Decompose R by using the second dependency: $R_{1}(B, D, E)$ (closure of B) and $R_{2}(A, B, C)(B$ and those attributes of R which do not belong to the closure of B).
- Check whether the new relations are in BCNF
- R_{1} has only a non-trivial dependency $B \rightarrow D E$. Calculate the closure of the left side:

$$
\{B\}^{+}=\{B, D, E\}
$$

The closure contains all attributes of R_{1}. Thus, B is superkey of R_{1} and R_{1} is in BCNF.

- R_{2} has a non-trivial dependency $A \rightarrow B$. Calculate the closure of the left side:

$$
\{A\}^{+}=\{A, B\}
$$

The closure does not contain C. Thus, A is not superkey of R_{2} and R_{2} is not in BCNF. We must decompose R_{2} again.

- Decompose $R_{2}(A, B, C)$: We obtain $R_{3}(A, B)$ (closure of A) and $R_{4}(A, C)$ (A and those attributes of R_{2} which are not in closure of A).
- Check whether R_{3} and R_{4} are in BCNF.
- R_{3} has only a non-trivial dependency $A \rightarrow B$. Calculate the closure of the left side:

$$
\{A\}^{+}=\{A, B\}
$$

Because the closure contains all attributes of R_{3}, A is the superkey and R_{3} is in BCNF.

- R_{4} has no non-trivial functional dependencies. Thus R_{4} is in BCNF.
- The final relations are $R_{1}(B, D, E), R_{3}(A, B)$, and $R_{4}(A, C)$.

