
Credential Remote Management

Laura Marcia Villalba Monne
Helsinki University of Technology
marcia.villalba@gmail.com

Abstract
Software credentials are vulnerable to many attacks and ex-
isting approaches to address secure storing and usage fall
short of providing an appropriate solution to these problems.
User memorizable passwords suffer from bad usability and
security. By contrast, dedicated hardware tokens provide
better security but they are costly to produce and distribute
and also suffer from bad usability. General purpose secure
hardware, like TPM and M-Shield have become available re-
cently in many commodity devices. These platforms allow a
strongly isolated TrEE and allow the deployment of creden-
tial platforms as On-board Credentials. This paper describes
how to extend the On-board Credentials to support credential
remote management.

Keywords: ObC, Credential Platforms, Trusted Com-
puting, TrEE, Credential remote management

1 Introduction
Credentials can be used for different security relevant tasks
such as authentication or providing confidentiality. For ex-
ample, in information systems credentials are used to authen-
ticate the users to the system. A classic authentication mech-
anism is the combination of user name and password. The
password authentication mechanism is popular because it is
easy to use, inexpensive and flexible. Software only authen-
tication mechanisms, such as passwords, do not require any
extra device or hardware to function, therefore they are cost
efficient to implement. Furthermore, passwords are a flexi-
ble authentication mechanism, they can be implemented in
almost any service and users are familiar with them.

However, passwords have some drawbacks: they suffer
from bad usability and they are vulnerable to phising and
malware. Instead of passwords, it is possible to use hard-
ware token authentication mechanisms, which are a physical
token used to prove one’s identity electronically. These to-
kens are more secure than passwords, because they provide
two-factor authentication. Two-factor authentication means
that to authenticate a user to the system, the user has to pro-
vide two different qualities about himself. These two quali-
ties have to belong to this list: something that the user knows
(e.g. password), something the user has (e.g. bankcard) or
something the user is (e.g. biometric).

However, hardware tokens have disadvantages. Firstly,
the logistics of manufacturing and distributing are expensive,
making this unattractive to the service providers. Secondly,
these tokens are inconvenient for the users, because typically
there is one hardware token per service (multiple applica-

tions per token exist but they are not popular), so the user
has to carry one token for each service.

In the last two decades several types of general purpose
secure hardware have become available in many commod-
ity devices, such as TPM [15], MTM [4], M-Shield [5].
These platforms enable a strongly isolated secure environ-
ment. These platforms enable a strongly isolated secure
environment and are called Trusted Execution Environment
(TrEE).

Due to the existence of TrEE, credential platforms became
possible and attractive. A credential platform is a framework
used for storing and using credentials such as, TEM [2], ObC
[7], etc.

A secure authentication mechanism provides trust to both
sides of the communication; to the user it gives the security
that no one can impersonate him, and to the service it gives
the security that the user is who he says he is. One example
of the usefulness of authentication mechanisms is in using
online banking. One way to use online banking currently
is using one time passwords (OTP). OTP are passwords that
are only valid for a single authentication session. Nowadays,
some banks give their customers a paper card or a device to
generate OTP. These OTP combined with a pincode (two-
factor authentication), are used every time the customers log
into the system.

Even though online banking using these authentication
mechanisms is secure, it is still possible that the customer’s
paper list or device can be stolen or lost. Also, these mech-
anisms are not easy to use, because customers have to carry
them whenever they may need to use the service. Further-
more, they are expensive, because the bank has to print and
mail all of the paper cards at least two times a year or dis-
tribute the device to all of its customers. Therefore the
problem is how to make online banking more secure, user
friendly and cost efficient?

One solution is to use OTP but in a TrEE. Therefore, in-
stead of receiving a paper list of OTP or a device, the cus-
tomer will receive in his computer / mobile phone (equipped
with a TrEE) a program to create the next OTP or a virtual
list with a number of OTP.

The above means, the bank can send to their customers,
more cheaply an algorithm or list, and the user can run it in
his mobile phone or computer, freeing the user from carrying
unnecessary gadgets. However, this solution creates a new
problem for the banks, how to manage all of their customers’
credentials? How to register, revoke or modify them? Usu-
ally banks have thousands of clients and managing them is
hard to do manually. Therefore, the system needs to manage
of all these credentials in a remote and automatic way.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Credential management is a fundamental issue for this
type of system, because the credentials that the devices are
using were provided by a third party, and the provisioning
entity (in this case the bank) has to be able to manage its
customers’ credentials. This procedure of remotely manag-
ing customer credentials, in this paper will be called creden-
tial remote management.

The main functionalities that a credential remote manage-
ment system should include are: provisioning of the creden-
tials, renewal of the credentials, managing of the credentials
and revoking of the credentials. Beside these functionalities
it has to be possible to grant new rights to existing credentials
or to have a system that allows the migration of credentials
to other devices. All of these activities have to be done re-
motely, and if possible automatically.

This paper describes an extension to a credential platform,
On-board Credentials, to support credential remote manage-
ment. This was a research made by Villalba [11]. Section 2
and 3 provide background information about different TrEE
and credential platforms. Section 4 explains how the scheme
was designed and a security analysis. The last section pro-
vides some conclusion for this research.

2 Background

2.1 Trusted Execution Environments
This paper uses the definition from Kostiainen et al. [7]
for general purpose secure environment or Trusted Execu-
tion Environment (TrEE). TrEE is defined as a system with
the following features:

• isolated secure execution, this means that is possible to
execute trusted code isolated from untrusted code exe-
cuting in the same device,

• secure storage,this means that it must be possible for
the trusted code to store persistent data in order to main-
tain the confidentiality and integrity of the data,

• integrity of TrEE, this means that there is a way to
ensure the integrity of the TrEE.

In the last decade different types of TrEE have been in-
corporated into the computing devices and are starting to be
widely deployed. These include Trusted Platform Module
(TPM) [15] and Mobile Trusted Module (MTM) [4] both of
which were specified by TCG. In addition, there are other
platforms like M-shield [5] and ARM Trust Zone [16] for
mobile devices.

• TPM: One of the most popular TrEE is Trusted Plat-
form Module (TPM) specified by TCG. TPM is a sep-
arated hardware module with its own processor. In
other words, TPM implementation is a chip that is at-
tached to the motherboard and controlled by the op-
erating system. TPM provides cryptographic opera-
tions with asymmetric key such as, generation, decryp-
tion, encryption, signing and, migration of keys be-
tween TPMs. Furthermore, it enables secure storage
and authenticated boot. However, TPM TrEE has to
rely on the operating system to provide secure execution

[7]. TPM supports Authenticated boot, it is a process
by which integrity measurements are reliable measured
and stored securely but not checked, this is a passive
method. This provides to a third party a proof of the
configuration initialization via attestation [14].

• MTM: On mobile platforms TPM is called Mobile
Trusted Module (MTM). Even though MTM specifica-
tion is closely tied to the TPM, MTM differs mainly
from TPM in these issues [4]:

1. Implementation of MTM: This means that
MTM can be implemented in software as well as
in a physical implementation of hardware.

2. Support of parallel MTM: The new specifica-
tion support several parallel MTM instances in the
same device.

MTM secure boot procedure is different form the TPM.
Secure boot is used to enforce integrity protection, each
time the device boots, the boot sequence is measured
and aborted if an non-approved state is reached [4].

• M-shield: M-shield was developed by Texas Instru-
ments and it is an example of a mobile TrEE. The main
difference between M-Shield and TPM is that in M-
shield is possible to execute arbitrary code while in
TPM only cryptographic operation are available. M-
Shield is contained in the main CPU and has two modes
of operation: normal mode and secure mode. Addition-
ally, M-Shield has a secure storage and it ensures the
integrity of the TrEE, only trusted (signed) code is exe-
cuted within M-shield [5].
In M-shield the code is called protected application, the
execution of it is isolated from the operating system side
because there is on chip ROM and RAM. However the
code and stack size is very limited, around 10-20 kB.
Nowadays Nokia mobile phones with M-Shield hard-
ware exist. This is the platform used by the On-board
Credential [7] (See Section 3).

• ARM TrustZone: ARM TrustZone is a security exten-
sion to the ARM processor core. In TrustZone is possi-
ble to execute arbitrary isolated code, like in M-Shield.
TrustZone introduces the concept of "secure world" and
"non-secure world". This means that there are registers,
interrupts flags and other system control registers that
exist in a separate secure version, totally inaccessible
from the non-secure world [16]. Therefore, the security
in TrustZone is achieved by partitioning the hardware
and the software resources in two worlds, however these
two worlds execute in one physical processor core us-
ing time-slicing. The context switch between the two
worlds is called the monitor mode.

• Java Cards: A smart card is a portable and tamper-
resistant computer, that carries processing power and
information. The Java Card contains a version of Java
virtual machine that is split into two parts: one that runs
off-card and the other that runs on-card. The main de-
sign goals of the Java Card technology are the porta-
bility and security. Java Card was developed for se-
curing sensitive information stored on smart cards. It



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

allows secure and isolated execution of applications,
it also supports commonly used cryptographic algo-
rithms. Objects in Java Card are stored in persistent
memory and the objects stored by one application are
not available to other applications [1].

2.1.1 Comparison of TrEE

Table 1 summarize the main features of the different TrEE
platforms.

2.2 Credential Platforms
A credential platform is a framework for storing and using
credentials. It is implemented using one of the TrEEs de-
scribed before and can also utilize some OS platform secu-
rity features.

• TEM: The Trusted Execution Module (TEM) [2] is
a credential platform, that was designed for low -
resource environments of inexpensive commercially-
available secure chips. TEM can execute any type of
credential and it guarantees the confidentiality and in-
tegrity of both the computation process and the infor-
mation it consumes and produces. Furthermore, TEM
does not trust the authors of the programs it runs, there-
fore a malicious closure cannot impact negatively on the
TEM and on the other closures that executes in the same
system. This results that there is no need for certificate
the third party closures.

A closure is the execution primitive of TEM together
with the binding of the variables that were in scope
when the closure was defined. To attest that the plat-
form offers a security platform, when the device is man-
ufactured a unique asymmetric key is installed in the
device, signed by the manufacturer that is the CA. The
private part of the key is generated inside the TEM and
never leaves the TrEE, and the public part is included in
an endorsement certificate.

• TruWallet: TruWallet is a wallet based secure web
authentication credential platform, this means that
TruWallet only deals with web login credentials. This
solution according to Gajek et al. [3] provides: (1)
Strong protection for user credentials and sensitive data
with TPM. (2) Automated login procedure where the
server is authenticated independently from SSL certifi-
cates. (3) A secure migration protocol for transferring
data to other protocols. TruWallet architecture is based
on a secure kernel, which is a small trusted computing
software layer, providing trusted services and isolated
compartments.

• Flickr: Flickr architecture that isolates sensitive code
execution using a minimal TCB. This means that Flickr
can run arbitrary code isolated, however the size of the
code is minimal. Flickr can execute at any time and
does not require a new operating system, this means
that the platform for non-sensitive operations remains
unchanged. Also, none of the software executing before
Flickr begins can monitor or interfere with Flickr code

Figure 1: ObC Architecture [7]

execution, and all traces of Flickr code execution can be
eliminated before regular execution resumes [12].

• SKS: The Secure Key Store (SKS) is a credential plat-
form, enhanced for smart cards and optimized for on-
line provisioning of cryptographic keys, this means that
SKS is limited to execute standard key pair operations.
One of the main characteristics of SKS is the capability
to emulate a set of independently issued and managed
smart cards using only online communication. The
main goal of SKS is to establish two-factor authenti-
cation as a viable alternative for any provider [13].

2.3 Comparison between credential platforms
Table 2 summarize the main features of the different creden-
tial platforms.

3 On-board Credentials
On-board Credentials (ObC) [7] is an architecture for pro-
visioning, storage and execution of credentials, that uses se-
cure general purpose hardware (TrEE).

Before starting with the architecture is important to define
what a credential is for ObC, it consists of credential secrets
such as keys, and an algorithm that operates on these secrets
known as a credential program [7].

One of the main goals in the ObC deployment is that the
system should be open, this means that is possible for anyone
to develop and deploy a new credential type or ObC program,



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

TPM MTM M-shield/TrustZone Java Card
Hardware Support Separate hardware Software and hardware Normal CPU Removable hardware
Boot Authenticated boot Secure boot Secure boot None
Execute TrEE code No No Yes Yes
Storage Secure Storage Secure Storage Secure Storage Secure Storage
Attestation Yes Yes Device specific propietary solutions No

Table 1: Comparison of TrEE

TEM TruWallet Flicker SKS ObC*
TrEE JavaCard (or similar) TPM TPM JavaCard M-shield (or similar)
Secure Storage Yes Yes Yes Yes Yes
Attestation Key Key Code Key Key
Secure execution of arbitrary code Yes No Yes No Yes
Provisioning Yes User inserts No Yes Yes
Credential Migration Yes Yes No Yes No

Table 2: Comparison of credential platforms (* Obc is presented in Section 3. )

or provision secrets to existing ObC programs without hav-
ing to obtain permission from a third party. In addition, it is
important that the openness do not compromise the security
of the ObC system [7].

Nowadays ObC is available in research phones and Nokia
N8 will be the first phone in the market that support ObC. It
will be available in the majority of Symbian 3 based Nokia
phones and newer.

3.1 Architecture
Figure 1 shows a high-level overview of the ObC architec-
ture, where it is possible to see two very different environ-
ments: the device OS and the TrEE. The main components
in the TrEE are: the ObC Interpreter and the ObC platform
key. While in the device OS the Credential Manager is its
most important component. These two environments are in-
side the device, additionally in the Internet it is possible to
find provisioning and other kinds of servers.

The ObC Interpreter is the core of the ObC platform and
it isolates credential programs from the TrEE resources. The
Interpreter is a simple byte code Interpreter that only uses
less than ten kilobytes of runtime memory. This Interpreter
executes a modified subset of Lua [8] and assembly scripts.
The trust of the Interpreter is based in code signing and it
provides a virtualized environment where the credential pro-
grams can be executed. Furthermore, the Interpreter pro-
vides isolation of the secrets, sealing and unsealing of the
secure data, and common cryptographic primitives.

The ObC platform key, (OPK) is part of a group of device
keys, these keys are used by ObC for key generation and
attestation. OPK is the device specific master key, it is a
symmetric key that was installed in the device at the moment
of its manufacture. The ObC Interpreter has access to it and
this key will never leave the TrEE.

In addition to OPK the other two asymmetric device keys
are: the internal device key (PKI and SKI ) and the exter-

nal device key (PKE and SKE). The first of these key pairs
is used by the Interpreter to sign data that originates within
the TrEE or which semantics can be verified within the TrEE
and the public part of this key pair is certified by the manu-
facturer as the internal device key. The second one is used
by the Interpreter to sign data that originates from outside
of the TrEE, this key usage is limited within the Credential
Manager using mechanism provided by the OS security, fur-
thermore the public part of this key pair was certified by the
manufacturer as the external device key.

The Credential Manager is a trusted operating system
level component that belongs to ObC platform, it controls
how client’s application accesses the TrEE. The Credential
Manager also maintains the ObC database and it provides a
simple API towards applications to hide complexity of the
executions inside the TrEE.

3.2 Provisioning
As was mentioned before, one of ObC main objectives is to
allow openness, this means that any entity can provision se-
cret data to a group of credentials or programs on the device.
In other words, any provisioner can provision credentials se-
crets to a group of credential programs on a device.

A family is an important concept in ObC, a family is a
group of programs and the secret data that they share. Cre-
dentials programs belonging to the same family may share
sealed and persistent stored data, in addition all the programs
and secrets are provisioned using the same family key (FK),
a random 16-byte key that is created at the provisioning side.

For example, is possible that two credential programs
(prog1 and prog2) want to use the same secret (sec1), to
achieve this prog1, prog2 and sec1 must belong to the same
family. The provisioning server will be the one determining
this.

Sensitive data (secrets and confidential programs) is stored
outside TrEE encrypted in the Credential Manager database.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 2: Provisioning in ObC

The operation of converting the data to the local storage for-
mat is called sealing and the complement operation is un-
sealing. To seal and unseal the sensitive data the OPK is
used.

The provisioning process can be seen at Figure 2, it starts
with the device sending the PKI to the provisioner server.
Then the provisioner server picks the FK randomly and en-
crypts the FK with the PKI , and the result is the ObCP/Init
message. This message is used to begin the family provi-
sioning. The goal of this message is to transfer the FK from
the provisioning server to the device.

When the FK arrives to the device, the Credential Manager
sends this package to the TrEE, and there using SKI decrypts
the FK. The TrEE contains a limited storage capacity, so the
FK has to be stored in the insecure environment, for this the
TrEE seals the FK using the OPK.

The FK is used as a symmetric key between the device and
the provisioner. The provisioner performs an authenticated
encryption to all the future packets with the FK. The secrets
and confidential programs are provisioned with the transfer
messages, denoted as ObcP/Xfer. These packages contain a
secret or a program encrypted with the FK.

When the device receives the ObcP/Xfer package, it sends
it to the the TrEE and there using the FK it will be decrypted

it. To store a secret or a program in a secure way, the LFK or
local family key is derived from the family key, and used to
seal this program / secret.

In the context of a family, a provisioner can authorize a
credential program to be able to access provisioned creden-
tial secret. To do this, the endorse package is used. This
package contains the hash of the byte code of the program
that is endorsed, and the endorsement will apply to the fam-
ily whose family key the endorsement package is encrypted
with. The endorse packet is denoted as ObcP/Endorse.

The device when it receives the package will decrypt it
using the FK and will create an endorsement token (ET), this
token will be sealed using the LFK from the secret, so it
means that this program is authorized to access this secret.

It is also possible that the program and the secret come
from different sources. To solve this, the provisioner of the
secret, endorse the program using an endorsement package.
After sending this package to the TrEE the program is able
to use that secret.

This protocol does not provides user authentication, this
must be handled separately, for example using TLS.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

3.3 ObC API
The ObC Credential Manager not only provides an architec-
ture but also provides an API to create applications in Sym-
bian C++ using the ObC features. The information of this
section was taken from [6], [9] and [10].

The ObC API provides three types of functionality:

• Device initialization: The ObC platform requires an
initialization phase before it can be used to its full ex-
tent. The initialization means the creation of the device
keys and the execution of the device key certification
protocols.

• Symmetric credentials: In ObC architecture a sym-
metric credential consists of two separate parts:

– Functions for adding provisioned secrets and pro-
grams.

– Creating credentials and running them.

• Asymmetric key pairs: The ObC API also supports
user created asymmetric key pairs. The key pairs are al-
ways generated locally and the private part never leaves
the TrEE. It is possible to do some operations with the
key pairs such as, sign message, verify signatures, de-
crypt and encrypt text.

• Local access control policy : This policy is used to de-
termine which applications can use the credential, this
is implemented using the AppAuthKey. This parame-
ter can be shared with other applications, so they can
access the credentials.

• User access control policy: This policy is used to
determine when ever the user has to authenticate to the
system for example by writing a secret PIN.

4 Credential remote management de-
sign

Credential Remote Management (CRM) is a scheme that
allows third party entities to remotely manage credentials.
This means that a third party entity can provision, revoke,
update, etc. credentials that they own in their customers de-
vices over any remote connection. The following section is
extracted from Villalba’s thesis [11].

Designing an CRM for the provisioning secrets from a
server, registration of key pairs, updating secrets and deleting
of credentials is not useful. This is because the provisioning
credentials is already designed and implemented in creden-
tial platforms, the update of keys is basically a new provision
or a new registration of the keys and the deletion of keys is
not needed because deleting the access of the credential in
the relaying server performs the same task. In addition, this
analysis revealed that there is a need for updating the creden-
tial parameters.

Therefore, this section details how the CRM of credential
parameters can be achieved. Nowadays, there is no complete
tool that provides management of credential parameters in
a remote way. There are some credential parameters that

are relevant to the owner entity of the credentials to keep
their credentials updated and to be able to manage them in
an automatic way.

To explain in a clearer way how the CRM scheme works,
this section presents an example that shows how the CRM
scheme is applied to a real life scenario. Then this section
explains in detail the protocol designed.

4.1 Example case
This example illustrates a possible usage for CRM. In this
example there are two entities: provisioning entity and CRM
server that are at the bank server and, a client who owns the
customer’s device.

As a concrete example, consider the following scenario:
Alice is a customer in a bank and wants to use her mobile
phone to log in into her online bank. The bank, therefore
sends to hers device a credential program and a credential
secret, in order for Alice to generate OTP, this set will be
called a credential.

This credential contains some parameters such as the ex-
piration date of the credential, the user authentication policy
(UAP), a list of applications that can access this credential
and the usage for it. These parameters will be managed by
the CRM.

One example of management that the CRM server can do
is to modify a customer UAP. The UAP for new customers
may be that the customers have to write their PIN code every
time they need to access an OTP. After some months of us-
ing the service, the bank may decide that the customer does
not need to identify himself every time he wants to use the
service.

Another possible example is the management of the appli-
cation list, for example if the bank creates a new application
for its customers. The customers will want to access that
application using their old credentials, therefore the creden-
tial’s application list has to be updated to include the new
application identifier.

4.2 Terminology and assumptions
This section provides the definition for the terminology used
in this chapter. In addition, it provides the reason why the
parameters were chosen to be part of the CRM scheme.

All of the credentials in ObC platforms can have param-
eters associated such as, name, owner, expiration date, user
authentication policy, application authentication policy, etc.
The parameters that a credential owner may be interested in
updating and being able to manage are the following: the
expiration date, an applications list identifying the applica-
tions that can access the credential (applist), the user authen-
tication policy (UAP) and the application authentication key
(appAuthKey) and if the credential can be modified. These
parameters are related to the ObC credential platform (see
chapter 3). In addition, some of these parameters will be
maintained and enforced by the Credential Manager in the
device and others will be maintained by the TrEE of the de-
vice.

• Expiration date: This date is the expiration date of
the credential, in general all credentials have an expi-



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

ration date, and the owner of the credential may want
to change this parameter after setting it. This parameter
is maintained by the Credential Manager because the
TrEE does not possess a clock.

• AppList: This parameter contains the list of applica-
tions that can access that credential. This is a list of
unique identifiers for the applications. It is maintained
and enforced by the Credential Manager because this
feature uses the unique identifiers provided by the un-
derlying OS security platform.

• UAP: The user authentication policy, describes how the
user authenticates to the device in order to be able to use
that credential. For example, the owner of the credential
may require that the user inputs a PIN code every time
that the credential is going to be used. This parameter
is enforced by the Credential Manager.

• AppAuthKey: Credentials can be bound during their
creation to an AppAuthKey. The appAuthKey depends
on the application authorization policy, which is used
to determine which applications can use the credential.
There are three possible options to access the creden-
tial: only the creator, using the appAuthKey or open to
all applications. Therefore, if an application wants to
access a particular credential that has the AppAuthKey
policy, it should share this key. This parameter is en-
forced by the TrEE, and it controls if this parameter ap-
plies.

• Modify: The owner of the credential may not want to
modify this credential later. When this parameter is set
that the credential should be not modified, it is not pos-
sible to change this value. This parameter is enforced
by the TrEE.

In addition to the different parameters, it is important to
define the different entities that are participating in the CRM
scheme:

• Provisioning server: The provisioning server is a
server that provisions the symmetric key. Provisioning
in this case means that the server creates and then sends
the credential to the device so that the device can use it.
(See section 3.2)

• CRM server: The CRM server is the server that man-
ages the credentials. It does not matter where the cre-
dential is created (either in the device or in the provi-
sioning server), the CRM server will be the owner of
the credential and will have the rights to update the cre-
dentials in the device.

The provisioning server and the CRM server usually are
the same entity.

• Relaying server: The relaying server is a server where
the credentials are used, e.g. the bank where the OTP
are used.

It is assumed that the CRM server and the device are, both
are equipped with a hardware-based TrEE that provides pro-
tected execution of trusted code and secure storage. Like-
wise, it is assumed that the operating system in the device

and in the CRM server only allows trusted applications to
communicate with the TrEE, however the operating system
cannot be trusted completely.

In addition, the provisioning server and the CRM server
can be the same server, in the event that a provisioning server
is needed. However, the CRM and the provisioning server
must always belong to the same party. The CRM can only
modify the credentials created by that provisioning server or
the credentials that were registered to the CRM server, in
other words the CRM server is the owner of those creden-
tials.

4.3 Threat model

The following assumptions are the capabilities of the at-
tacker:

1. Network communication control: The attacker is able
to read, modify and replay any network traffic between
the user’s device and the CRM server.

2. External media control: The attacker has access to
any data stored in insecure storage media.

3. TrEE control: The attacker cannot read or modify any
processing that takes place within the TrEE, or read or
modify any secrets. The attacker is not able to tamper
the TrEE with hardware or mount side-channels attacks.

4. Operating system controls: The attacker can install or
remove any OS application while in physical possession
of the device. The attacker might reinstall the OS, or
reset it. The attacker can also erase the secure database.

4.4 Security requirements

The following requirements are security requirements that
this design must enforce:

1. Only the same entity that provisions the secrets or
where the key pair is registered, it is the one that will
be able to update the parameters.

2. There are some parameters that must be kept confiden-
tial from other applications, these parameters must not
leak during the remote management.

5 Design of credential remote man-
agement scheme

This section describes the proposed design for CRM scheme.
It is divided into three subsections: asymmetric key creation
and registration, symmetric key provision and credential up-
date.

It is important to notice, that this protocol as ObC does,
does not provide user authentication, this must be done sep-
arately.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 3: Asymmetric key creation

5.1 Asymmetric key creation and registration

Key creation is the first step in the CRM scheme. Key cre-
ation results from the request of a CRM server to a device to
create a new asymmetric key, and the registration of that key
to the server. This process will also create the parameters
associated with this credential.

Figure 3 shows how new asymmetric key is created and
how the parameters of that key are assigned.

The steps shown in Figure 3 are described below:

Step 1: The client sends its public device key to the CRM
server, this is needed in order to the CRM server can encrypt
the parameters enforced by the TrEE of the device. When
the CRM server receives the public key of the device, it cre-
ates the parameters associated with the credential: expiration
date, applist, UAP, appAuthKey, and the parameter if the cre-
dential is modifiable. Only the required parameters will be
created.

Step 2: The appAuthKey and the modify parameters have
to be communicated to the device’s TrEE to process them.
Therefore, in this step the server encrypts the parameters us-
ing the public key of the device.

Step 3: The CRM server sends to the device the parame-
ters, the encrypted parameters and its public key.

Step 4: The Credential Manager sends the encrypted pa-
rameters to the TrEE. The TrEE creates the key pair and then
decrypts the encrypted parameters using the secret key of the
device. Then it seals the private part of the key pair with the
decrypted parameters using the OPK, and sends them to the
Credential Manager, to be stored in the secure storage.

Step 5: The Credential Manager sends the public key of
the just created key to the CRM, in order to prove that the
creation process was successfully finished.

5.1.1 Symmetric key creation

The key creation is the first step in the CRM scheme. The key
creation results from the request of a CRM server to provi-
sioning a new symmetric key to the device. This process will
also create the parameters associated with this credential.

Figure 4 shows how a new symmetric key is created and
how the parameters of that key are assigned.

The steps shown in Figure 4 are described below:
Step 1: The client sends its public device key to the CRM

server, this is needed in order to the CRM server can encrypt
the family key (FK). The FK is shared between the CRM and
the TrEE.

Step 2: This step is the same that the ObC provisioning.
Step 3: The CRM creates the parameters for this sym-

metric key: expiration date, applist, UAP, appAuthKey, and
modify. Only the required parameters will be be created.

Step 4: Then the XFER message is created like the normal
provisioning, but the AppAuthKey and modify parameters
can be added to the seal.

Step 5: The CRM server sends to the device the INIT and
XFER messages its public key.

Step 6: The TrEE adds the credential secret. The Cre-
dential Manager sends the INIT and XFER message and the
public key of the server to the TrEE. The TrEE extracts the
secret from the package and all the parameters. Then it seals
the secret with the decrypted parameters and the server pub-
lic key using a derived version of the FK, and sends them to
the Credential Manager, to be stored in the secure storage.

Step 7: The Credential Manager creates a key identifica-
tion for that credential and stores the secret with the other
parameters. When it completes the creation process, it sends
the key identification to the CRM server, in order to prove
that the creation process was successfully finished.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 4: Symmetric key creation

5.1.2 Creating and updating parameters

Using this scheme is also possible to create new parameters
and update for the already existing credentials old parame-
ters. For example, a credential can be created without an ex-
piration date, and later the owner of the credential has the op-
tion to add that as a new parameter. This operation is called
update of the parameters, and Figure 5 illustrates how it is
done for asymmetric keys.

To update the parameters in the device:
Step 1: The CRM server looks for the public key that it

wants to modify. Then it checks that the credential is modi-
fiable.

Step 2: It the credential can be modified, the CRM modi-
fies the parameters.

Step 3: If the parameter to be updated is appAuthKey
or modify, then these parameters have to be encrypted, in
order for the TrEE in the customer’s device to manipulate
them. Therefore this step will encrypt the parameters using
the stored public key of the device.

Step 4: The CRM server sends the parameters and the
public key of the server to device.

Step 5: The Credential Manager sends the encrypted pa-
rameters, and the sealed private key to the TrEE. First the
TrEE checks that the credential is modifiable. If so, then the
TrEE unseals the private part and updates the corresponding
parameters. Finally it seals it again.

Step 6: The Credential Manager sends the public key to
the CRM, in order to prove that the creation process was
successfully finished.

If the credential is a symmetric key, the update of a param-
eter is almost the same, except instead of using the private
and public part, it will be the FK and the credential secret.

5.2 Security analysis

Based on the assumptions presented in the previous chap-
ter and the threat model, the following section provides an
informal security analysis of the proposed CRM scheme.

The design meets the security requirements (see Section
4.4), the first requirement is meet and enforced by signing
the parameters with the key of the server. At the moment
of creation of these parameters, the public key of the server,
responsible for the creation of the parameters, was stored in
the device and, at the moment of the update the device will
verify that the parameters are signed using the same key.

The second requirement is meet and enforced by encrypt-
ing in the server the parameters that must be kept confidential
using the public key of the device. In this way, the only entity
capable of decrypting them is the device’s TrEE.

The design implementation provides a safe way of trans-
mitting all of the messages through the network, even though
the attacker can control the network communication, the
messages travel over TLS.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 5: Asymmetric key update of parameters

The parameters that are enforced by the Credential Man-
ager (expiration date, application list, UAP) are stored in the
device’s un-trusted environment. Even though, these param-
eters are secured by the OS security features, if the OS has
been compromised it is possible that these parameters have
also been compromised.

In addition, the parameters enforced by the TrEE are
also in the ObC database, however these parameters are en-
crypted with a key that is only available in the TrEE. These
parameters cannot be compromised, because the attacker
cannot read the key from the TrEE.

The expiration date enforcement is provided by the Cre-
dential Manager. The Credential Manager is able to control
the expiration date of a given credential using the clock of
the OS. The expiration date update can be supported simply
by modifying this parameter in the Credential Manager. The
expiration date is included in the credential information with
other parameters.

The application list (applist) is enforced by the OS secu-
rity platform. This parameter is stored in the OS environment
and its update is supported by overwriting this list.

The user authentication policy (UAP) enforcement is
provided by the Credential Manager. The Credential Man-
ager controls this policy and its update.

The application authentication key (appAuthKey) en-
forcement is provided by the TrEE. This key is only visible
inside the trusted environment and it can only be updated by
the interpreter. Furthermore, the key creator can always be
identified via its public key or using a FK.

The modify parameter, is enforced by the TrEE. This pa-
rameter is only visible inside the TrEE and it can only be
updated by the interpreter. Further more the creator can al-
ways be identified via its public key or using a FK, like in

the appAuthKey.

5.2.1 OS Attacks

If the attacker is able to attack the operating system he will
be able to do certain attacks as rollback attack. Rollback
attack means that if the TrEE modifies a value in the ObC
database, then the attacker can replace that new value with
an older version, and the TrEE will not notice the attack.

Another possible attack is that the attacker modifies the
parameters that are enforced by the Credential Manager. If
the attacker takes control of the OS, those parameters are not
safe any more, and can be modified and read by the attacker,
because the security of these parameters depends on the OS
security platform.

6 Conclusions
This section includes an overview of the conclusions ob-
tained throughout, the benefits that the CRM scheme will
provide.

This paper describes the design of a CRM scheme for cre-
ating and updating credential parameters in an automatic and
remote manner.

The most important aspects of this paper are:

1. The remote management of parameters was found
to be needed, because none of the studied credential
platforms provided this feature. The purpose of the
CRM scheme designed in this thesis is to manage cre-
dential parameters.

2. The parameters that were identified as important pa-
rameters to be managed were the: expiration date of



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

the credential, the application list of what has access to
that credential, the user authentication policy in order
to use the credential, and the application authentica-
tion key of the credential. These parameters are impor-
tant to the owner of the credential, who might want to
access them and update them after the creation of the
credential.

3. The benefits of the CRM scheme for the owner of the
credentials are that this scheme allows remote man-
agement of its customer’s credential. This scheme
can also provide an automatic update of the parame-
ters, so if the owner has to update all of his customer’s
credential, he can do it using this scheme in an auto-
matic way. Additionally this scheme provides creden-
tial security, during the transmission over the network
and in the storage.

References
[1] Z. Chen. Java Card Technology for Smart Cards: Ar-

chitecture and Programmer’s Guide. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[2] V. Costan, L. F. Sarmenta, M. Dijk, and S. Devadas.
The Trusted Execution Module: Commodity General-
Purpose Trusted Computing. In CARDIS ’08: Proceed-
ings of the 8th IFIP WG 8.8/11.2 international con-
ference on Smart Card Research and Advanced Ap-
plications, pages 133–148, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] S. Gajek, H. Löhr, A.-R. Sadeghi, and M. Winandy.
TruWallet: trustworthy and migratable wallet-based
web authentication. In STC ’09: Proceedings of the
2009 ACM workshop on Scalable trusted computing,
pages 19–28, New York, NY, USA, 2009. ACM.

[4] Jan-Erik Ekberg AND Markku Kylänpää. Mo-
bile Trusted Module (MTM) an introduction.
http://research.nokia.com/files/tr/NRC-TR-2007-
015.pdf, 2007. [Online: accessed 23/08/2010].

[5] Jerome Azema AND Gilles Fayad. M-shield
Mobile security technology: making wireless secure.
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf,
2008. [Online: accessed 23/08/2010].

[6] Kari Kostianen AND Marcia Villalba. Credential man-
ager API documentation. Available from authors, 2009.

[7] K. Kostiainen, J.-E. Ekberg, N. Asokan, and
A. Rantala. On-board credentials with open provi-
sioning. In ASIACCS ’09: Proceedings of the 4th In-
ternational Symposium on Information, Computer, and
Communications Security, pages 104–115, New York,
NY, USA, 2009. ACM.

[8] Lua. Lua: the programming language.
http://www.lua.org/, 2010. [Online: accessed
23/08/2010].

[9] Marcia Villalba. ObC Example. Nokia Research Cen-
ter. Available from authors, 2009.

[10] Marcia Villalba. ObC Tutorial. Nokia Research Center.
Available from authors, 2009.

[11] Marcia Villalba. One-time password implementation
and credential remote managment scheme using On-
board credentials, 2010.

[12] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. In Eurosys ’08: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 315–328, New York, NY,
USA, 2008. ACM.

[13] Rundgren, Anders. SKS (secure key storage) - API and
architecture. http://webpki.org/papers/keygen2/sks-
api-arch.pdf, 2010. [Online: accessed 26/08/2010].

[14] A.-R. Sadeghi, C. Stüble, and M. Winandy. Property-
Based TPM Virtualization. In T.-C. Wu, C.-L. Lei,
V. Rijmen, and D.-T. Lee, editors, Information Secu-
rity, volume 5222 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-85886-7.

[15] Trusted Computing Group. Trusted computing.
http://www.trustedcomputinggroup.org/trusted_computing,
2010. [Online: accessed 04/01/2010].

[16] J. Winter. Trusted computing building blocks for em-
bedded linux-based ARM trustzone platforms. In STC
’08: Proceedings of the 3rd ACM workshop on Scal-
able trusted computing, pages 21–30, New York, NY,
USA, 2008. ACM.


