
Privacy challenges of open APIs: case LBS

Alberto Vila Tena
Helsinki University of Technology
alberto.vilatena@tkk.fi

Abstract

Many of the most popular Location-Based Services(LBSs)
have recently released open APIs for developers in order to
extend their services to third party applications. With this
strategy, LBSs try to exploit to the maximum the value of
location information by helping the fast development of spe-
cific context-aware applications involving location. How-
ever, protecting location privacy has always been the main
challenge for LBSs and despite all the research dedicated
to this aspect, it has been yet impossible for them to define
standardized ways to protect users’ location privacy. In this
context in which ideas about protecting location data are still
unclear, open APIs for LBSs appear offering new ways for
location data to be distributed. Therefore, now the challenge
of protecting location privacy is even bigger. This paper re-
views how different existing LBSs aim to protect location
privacy and different techniques of protecting location data,
and discusses which directions LBSs and their open APIs
could take in order to respond to the privacy challenges that
they have to face.

1 Introduction

Open APIs (Application Programming Interfaces) are cur-
rently boosting the interaction within different websitesand
the Internet. Every day more and more web applications are
using and offering open APIs because of the big advantages
they offer. By publishing an open API, a website converts
its services into public available resources, which are open
to any developer or any other site in the Internet. This has
as a consequence that sites and developers are able to eas-
ily improve and complement the services that these open
APIs offer, creating this way more advanced and complex
services, and, accordingly, a better user experience. Lo-
cation Based Services (LBSs) are following the same way.
Initially, we used different LBSs for concrete and different
goals, such as exploring our city or sharing punctually our
location with friends. But lately many of these LBSs have
released their open APIs, and new opportunities due to the
interaction of LBSs with other LBSs or different web ser-
vices have appeared[15][5]. Synchronizing a single location
update with all the LBSs that we are using so we can receive
real time services from all of them, or sharing our location
with our contacts in our favourite social network are for ex-
ample some of the features that we can enjoy thanks to the
implementation of open APIs in LBSs. Another powerful
reason to favour the interaction of LBSs with other services
is the wide range of contexts in which LBSs could be used.

Even though leisure is the context of the most popular LBSs,
they could also offer interesting features for domains suchas
health, transport, work, etc.

However, since the concept of LBSs started to appear,
there have been great privacy concerns regarding them.
LBSs deal with location data, which is, by nature, a very sen-
sitive and complex information item. While a single piece of
location data about a user may be irrelevant and not compro-
mise her privacy, a big collection of them certainly reveals
many clues about a user’s life, being able to reveal infor-
mation such as where she lives, where she works, in which
areas of the city does she go out, which are her favourite
stores, which buildings does she visit and how often, etc. In
other words, a big collection of location data from a single
user is so connected with her daily life and routines that it
makes possible to infer many details of her identity, habits
and lifestyle. Users typically consider some of this informa-
tion private, and that is why protecting location data is a pri-
ority and a big challenge for LBSs, and the recent release of
open APIs in LBSs just makes the challenge more difficult..

This paper studies some of the recently appeared location
open APIs to determine which challenges should they face in
order to preserve their users’ location privacy and presents a
collection of ideas to respond to these challenges. The paper
is structured as follows: The next section reviews some of
the current open APIs in LBSs. Section 3 identifies privacy
challenges that current location open APIs present. Solu-
tions to these privacy challenges are presented in Section 4.
Section 5 discusses how to apply the presented solutions in
order to achieve more secure LBSs and location Open APIs
and, finally, Section 6 concludes the paper.

2 Current Location Open APIs

This section reviews some of the currently existing location
APIs. The following five examples show different ways in
which APIs deal with location data.

2.1 Telecom APIs

Mobile operators were behind the first generation of LBSs,
a bit before the emergence of Web 2.0. Basically, opera-
tors made use of cell-id positioning using triangulation tech-
niques to provide their clients with really simple services[3].
These services did not succeed, and soon GPS (Global Po-
sitioning System) and Web 2.0 went completely over them,
causing the appearance of a new generation of LBSs, cre-
ated by companies and developers independently of mobile



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

operators. However, some mobile operators have recently re-
leased APIs offering their services to developers in order to
open ways for new business models, and location is within
these services. Two examples of these APIs are GSMA
OneApi1 and Innovation World Developer2. The first one is
a global initiative and its first pilot is taking place in Canada
involving the three main operators there: Bell, Rogers and
Telus. Innovation World Developer is, instead, a contest or-
ganized by the Finnish operator TeliaSonera in which they
provided a set of REST (Representational State Transfer)
APIs to developers in order to facilitate the creation of new
web applications and mashups.

To use these APIs, a developer should register to them pro-
viding a user name, a password and a mobile phone number.
Then, the API provider checks that the given mobile phone
belongs to the developer by sending a validation code to her
phone and, after this step, the registration is complete and
the developer is able to use the APIs. Once registered, the
developer is given a user key and a service key, which are the
credentials she should use in order to invoke the REST APIs.
Both keys are random character strings. The user key identi-
fies the developer and is periodically renewed after a certain
time. To get her current user key the developer should call a
login API with her user name and password. A service key,
instead, identifies an application in which the user invoking
the APIs. A developer is able to create as many service keys
as she wishes and these keys are permanent and accessible
from the developer’s profile. In the case of the location API,
the developer should authorize her device to be tracked by
the operator first by sending an SMS, and after this step, she
is able to execute the API normally by sending requests using
her user key and one of her service keys. To every request
the API replies with a XML or JSON message containing the
location data corresponding to the requestor’s mobile phone.
Finally, location tracking of a mobile device could be deac-
tivated in the same way as it is activated, with an SMS.

2.2 Yahoo! Fire Eagle

Yahoo! Fire Eagle3 was the first location broker. This defi-
nition comes from its function. Fire Eagle collects the user’s
location data from different sources and forwards it to third
party applications, which are the ones which provide differ-
ent services regarding the given location. Then, Fire Eagle
assumes that a regular user may use different LBSs and, for
this reason, its main purpose is to offer the users a central
point to store their location information and from which to
update their location in all the LBSs that they are using with
a single operation.

Fire Eagle exchanges location information with third party
applications through its REST API. This API allows to a
third party application to update a user’s location to Fire Ea-
gle or to extract the location of a single user or of a set of
users from Fire Eagle. In order to perform any of these op-
erations over a user, a third party application must be autho-
rized by the user to do it. Fire Eagle uses the OAuth protocol
for authentication and authorization. Following this proto-

1http://oneapi.aepona.com/
2http://developer.medialab.sonera.fi
3http://fireeagle.yahoo.net/

col, when a user decides to authorize a third party application
to update or extract her location information, she provides
the application with an authorization token, and with this to-
ken the application is able to make requests to Fire Eagle’s
API on behalf of the user. In other words, the user authorizes
the third party application to update or to extract her location
information in Fire Eagle with the token. When a user au-
thorizes a third party application to use her location data in
Fire Eagle, she is able to specify the accuracy with which
she wants her location to be transmitted. Fig. 1 shows a sam-
ple of the different levels of accuracy in Fire Eagle, which
are postal code, city, region, state and country. Finally, it is
also remarkable the fact that a user is able to remove at any
moment all the location data about her that is stored in Fire
Eagle.

2.3 Foursquare

Foursquare4 combines social networking, location and gam-
ing. Users get points by checking-in at venues and, by accu-
mulating certain amounts of points, they are able to unlock
different badges which distinguish them with different levels
in the application according to their activity, such as “new-
bie”, “explorer”, “superstar”, etc. Also, users are able to
become the “mayors” of certain venues if they check-in fre-
quently at them. Also, Foursquare works as a social network,
because users are able to share their check-ins and achieve-
ments in the game with their friends and also with other users
of the application which are not their friends. Concretely,
users are able to show their check-ins just to friends, but, if
they wish to participate in the game, they should comply in
showing their achievements in public. Also, Foursquare is
popular for its integrated interaction with the two most well-
known social networks, Twitter and Facebook.

Foursquare’s API for developers offers a wide range of
operations related with the users’ check-ins, profiles and
check-in histories. Also it offers a set of operations re-
lated to venues, allowing categorizing them, giving tips re-
lated to them, etc. To allow third party applications to re-
quest the users’ authorization to execute these API opera-
tions, Foursquare recommends OAuth, even though these
operations are also accessible through other protocols such
as XAuth or simple authentication. All the location data
that could be extracted from Foursquare API has no levels
of granularity regarding its accuracy, so it is always shared
with the best accuracy possible.

2.4 Google Latitude

Google Latitude5 started as a location sharing social network
integrated with Google Maps6. Google Latitude allows live
tracking both for mobile phones and laptops, and uses this
option by default, so when a user has Latitude activated, her
friends are able to see where she is in a map, unless she
blocks them or turns the live tracking feature off. If the user
does not feel comfortable with being permanently tracked
and decides to turn this feature off, she is able to update her

4http://foursquare.com/
5www.google.com/latitude
6http://maps.google.com/



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 1: The 5 levels of accuracy in FireEagle

location in latitude by manually typing in a web form the
address where she is. Later, Google Latitude features were
complemented by a location history that records the differ-
ent locations of the user in time. With the location history,
Latitude intends to offer the user stats and information about
her movements and locations, and also an intelligent system
of alerts, through which the user receives an e-mail or SMS
notification about the proximity of friends on a circumstance
in which she may like to meet friends around.

In May 2010 Google Latitude released its API, giving de-
velopers access to its location features and data. The result
is an API which is similar to the Fire Eagle’s one. OAuth is
the protocol through which a third party application obtains
the authorization of a user to update or extract her location
data in Google Latitude. Also, the API also works with the
location history, and with an OAuth token a user is able to
authorize a third party application to insert, list or extract lo-
cation data from the history. When a user authorizes a third
party application the access to her location data, she is able
to choose within two levels of granularity, city and best, for
the accuracy of the accessed location.

2.5 Simple Geo

SimpleGeo7 is a project in development that aims to provide
a scalable, cloud-based interface for storing, managing and
querying location data. SimpleGeo offers, as a main fea-
ture, a cloud storage service adapted for location data. Loca-
tion data is represented in this storage system by records. A
record is a data type that specifies the location of a place, a
person or related to a multimedia item. Every stored record
should belong to a layer, hence, a layer is equivalent to a
folder (or a bucket in Amazon S3 terminology) that contains
a collection of records. When developers have signed up in

7www.simplegeo.com

Simple Geo, they are able to create their own layers to store
the location data of their applications. Finally, SimpleGeo
also offers an interface giving developers the option of sell-
ing their layers to other developers, and also, the possibility
of buying other developers’ location data collections. Cur-
rently, and despite SimpleGeo is still in a beta development
phase, services such as Flickr are already offering their loca-
tion data in SimpleGeo.

In addition to the storage service, SimpleGeo offers also a
REST API to developers to interact and make queries to it.
These queries allow actions such as inserting a new record,
updating a record, get a record’s location history or make
nearby queries to check records located near a given geo-
graphical point or area. Besides, other services are avail-
able such as reverse geocoding, identifying the administra-
tive boundaries of a point or getting the population densityof
a certain point through SpotRank. Every REST query should
be authenticated using OAuth tokens.

3 Privacy Challenges

Almost all current LBSs could be divided into two
categories[8]. The first ones are the called reactive LBSs,
which wait for an update from the users to offer them
context-aware services. The others are the proactive ones,
which receive live tracking location from the users and send
them alerts about the proximity of interesting places or
friends. Each of these categories has so different privacy im-
plications. In reactive services, the user is the one who vol-
untarily discloses her location with a concrete finality. This
means that the user is confortable with sharing her location,
on the condition that this location reaches its intended recipi-
ents. Then, the only privacy measurement needed is to avoid
the location reaching an undesired recipient. On the other
hand, proactive LBSs require less work from the users, as



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

they do not need to update their location every time they want
to receive a service, but also create bigger privacy problems.
In them, users get permanently tracked, so the probability of
disclosing a location about which they do not feel comfort-
able gets increased. In addition to this, live tracking allows
to infer much more about users’ lives and habits through lo-
cation than occasional check-ins, a fact that may increase
privacy concerns in users. Also, it is remarkable that LBSs
involving live tracking usually run in background and most
of the times, the user does not notice this. This fact reduces
the control that the user has over the application, because
with time, the user may forget that she is tracking her posi-
tion permanently. Also, this opens the door for attackers to
stalk their victims in some cases. For example, a jealous hus-
band has many chances to reach her wife’s phone for a while
and activate Google Latitude or the location tracking feature
of an operator’s API; or a boss could give company phones to
their employees with a live location tracking service already
activated. Finally, many users may also consider undesired
alerts intrusive. Therefore proactive LBSs not only need ad-
vanced privacy controls but also a really accurate system of
alerts.

Independently of their nature, LBSs should address also a
set of common challenges.

3.1 Effective Privacy Policies

A big challenge regarding LBSs is the implementation of ef-
fective privacy policies. Even though there are many differ-
ent ways to protect location privacy, as surveys such as the
one by Scipioni and Langhenrich[9] indicate, user-defined
privacy policies have become by far the method chosen in
practice by the vast majority of the current LBSs. How-
ever, user-defined privacy policies present for LBSs the same
problems than they do for social networks. So, if they are so
simple, they will have big chances to disclose undesired in-
formation. On the other hand, if they are complicated, they
will take a big amount of work from the users, in addition
to their more than possible need of being updated with the
time. Also, the appearance of Open APIs and the interac-
tion of LBSs with other services, especially, social networks
adds a new difficulty for user-defined privacy policies. In
this case the users not only need to configure their privacy
policies in their original LBS, but also they should not for-
get about their privacy policies in the social network where
they have decided to share their location. This accumulation
of different user-defined privacy policies in different services
favours data leaks.

3.2 Features vs. Privacy

Also, API providers, in their emphasis of providing their
services to developers, forget sometimes about their users’
privacy. An illustrating example of this is in Foursquare’s
API. Foursquare, in their API documentation[1] make the
following recommendation for authentication “OAuth is the
method we strongly encourage you to use so that clients do
not have to hang on usernames and passwords but can initi-
ate requests on a user’s behalf via a special token”. However,
there are API methods, such as “checkins” and “user” that,

when requested, reveal respectively the requestor’s friends’
most recent check-ins, and the requestor’s user profile, in-
cluding her friends and their details, and within these details
it is possible to find contact information such as e-mails and
phone numbers. Therefore, if a user authorizes a third party
application to make API requests to these methods on her
behalf, the third party application is gaining access to there-
cent locations and contact information of the user’s friends,
who have not given any authorization for this. This example
shows that avoiding oversharing without losing attractiveis
a challenge for API providers.

3.3 Authorization and Authentication

Authorization and authentication are also a critical factor for
keeping the users’ privacy in Open API because they pre-
vent against identity theft. Currently, as we have seen be-
fore, most part of the open APIs make use of OAuth tokens
for authentication and authorization. With OAuth, users are
able to authorize external applications to make certain re-
quests to an API on their behalf without revealing their cre-
dentials at all. However, in many cases, OAuth tokens have
validity for long periods of time. As a consequence, if the
external application stored the access token when it was au-
thorized by the user, it will be able to make API requests on
behalf of the user for a long period of time. So these long-
lasting tokens may be an inconvenience for the occasional
user that requests the third-party application for a singleand
punctual operation from time to time. Despite this inconve-
nience, there are other ways of authorization and authenti-
cation that suppose a much bigger risk, as for example the
way Foursquare makes use of XAuth[2] or the way in which
the user key is obtained in TeliaSonera’s Innovation World
Developer. In both cases, the user should introduce her user
name and password in the third party application to produce
an access token or a user key and, even though the third party
application should dismiss these credentials and store theto-
ken or the key instead, there is no technical impediment for
it to store the user’s credentials too.

3.4 Data Ownership

Data ownership, as the past shows[11], represents also some
of the privacy concerns of Internet users. It is true that allthe
applications we have reviewed in this paper try to give con-
trol to their users regarding their stored location data. How-
ever, the open APIs include a new party in the game, the third
party applications. These third party applications receive the
results to their API requests in XML or JSON responses, be-
ing perfectly able to store the locations or other information
in these responses in their databases. In these cases, users
lose the control they initially had over their information in
the API providers’ original services and third party applica-
tions are not obliged at all to offer them a similar deal.

3.5 Other Risks

Finally, very powerful solutions for processing and data anal-
ysis of big amounts of location data, as for example it was
SimpleGeo, are appearing all around the World Wide Web.



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Even though these solutions are able to offer significant im-
provements and new features to current LBS, they could
also become good allies for attackers. Friedland and Som-
mer show good examples of this on their research paper Cy-
bercasing the Joint: On the Privacy Implications of Geo-
Tagging[6].

4 Privacy Preserving Solutions

This section shows possible solutions for the given privacy
problems.

4.1 Geo-fences

Geo-fences[10](Fig. 2) consist in virtual areas defined over
real world geographic areas. New ideas are considering geo-
fences as the key elements of solutions that try to be a mid-
dle point between manual location updates and live-tracking.
In these solutions, users define various geo-fences in which
they wish their location to be updated to the LBS. This way,
the probabilities of updating a compromising location to a
LBS get significantly reduced compared to live-tracking so-
lution, and, on the other hand, the user is able to receive
alerts and services in LBSs in those contexts in which he is
more eager to do it. Also, geo-fences enable a new feature
that may be interesting in some cases, as they are not only
able to determine where a user is located, but also if the user
is entering the area or leaving it. A new service involving
this use of geo-fences is Neer8.

4.2 Implicit Authorization

Implicit Authorization[13] is a technique oriented to Loca-
tion Sharing Social Networks that has reciprocity as its cen-
tral element. This reciprocity is based in the following prin-
ciple: An inquirer A is granted access to the location infor-
mation of target B, only if B in turn has previously attempted
to access the location information of A. This means that lo-
cation information is only shared if there is trust and mutual
interest between the two users involved in the communica-
tion. The whole implicit authorization process works as fol-
lows(Fig. 3):

1. An inquirer A requests a target B’s location.

2. As B has not required A’s location first, A receives an
error. However, B is automatically given permission to
access A’s location for an established time.

3. B executes her acquired permission and requests A’s lo-
cation.

4. B receives A’s location and, automatically, A receives
permission to access B’s location for an established
time.

5. A and B are able to share location information freely till
one of them does not access the other’s location during
the time established by the permission.

8http://www.neerlife.com/

Figure 2: Examples of geo-fences

In conclusion, implicit authorization is a solution aimed to
satisfy those users that expect reciprocity in their use of lo-
cation sharing social networks, and its biggest attractiveis
that it helps to reduce possible abuses of the system, such as
stalking, without demanding any effort from the users. As
a consequence, implicit authorization is an interesting solu-
tion for Location Sharing Social Networks involving live-
tracking location.

4.3 Improving Privacy Policies

The vast majority of the current LBSs rely on user-defined
privacy policies to protect their users’ privacy. Concretely,
users are able to decide with whom they decide to share their
location and with which accuracy. However, these configu-
rations do not help to avoid completely the risk of disclosing
a compromising location to an undesired recipient. Differ-
ent studies by the Carnegie Mellon University[4][14] have
determined that adding other factors to privacy policies such
as time and nearby locations to privacy policies significantly
improves the feeling of security in the users. All these stud-
ies got reflected in Locaccino[12]9. However, this approach
has also its inconveniences, as the elaboration of privacy
policies become more complex for the users. This increas-
ing complexity of privacy policies is also a problem that re-
search is trying to face, for example, the same research group
in Carnegie Mellon University proposes a solution based in
incremental privacy policies generated by machine learning

9www.locaccino.org



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 3: Implicit authorization schema

from the users’ feedback[7].

4.4 Other Possible Solutions

There are also other different solutions that would help to
solve the privacy problems described in Section 3. First,
enabling visual alerts is a simple solution to allow users to
know that a live-tracking location service is running in back-
ground in their mobile devices, which was one of the prob-
lems of Google Latitude. Identically, periodic SMS alerts
from operators would allow users to remember that they have
their phones being tracked.

Also, it is necessary for API authorization procedures to
use protocols such as OAuth, which do not involve the users’
authentication credentials in the process. Regarding OAuth,
enabling access tokens for short periods of time is a solu-
tion that enforces the privacy of those users that may request
punctual actions from a third party application, as they trans-
late the punctuality of the operation also to its authorization.

Prevent the users about the risks of oversharing is also a
simple solution that may solve many privacy problems. Cur-
rently, LBSs have usually really intuitive tutorials for the
users, and to include alerts and advices about oversharing
in them or even in other parts of the application may make
the users more aware about the problems of oversharing.

Finally, a problem that is difficult to share in open APIs
associated to LBSs is the data ownership one. API providers
could include terms of use prohibiting third party applica-
tions to store the location information that they are getting
from them, or to acquire the compromise of letting the users
manage their stored location data. Even though, solutions
like these may also discourage possible developers from us-
ing the APIs.

5 How to effectively preserve privacy?

It is easy to come to a curious conclusion after reviewing
different LBSs and their open APIs, which is that, regarding

their user-defined privacy policies, they give the same treat-
ment to people that to third party applications. Users define
in their privacy policies who they want to share their location
with and with which accuracy, and identically, in those LBSs
with open APIs, users are able to decide with which associ-
ated third party applications they want to share their location
and with which accuracy. However, sharing location data
with another people has far away different implications than
doing it with an application.

When we share our location with people, we usually do it
with someone with whom we have some kind of social bind-
ing, and it is around this social binding where all the pri-
vacy concerns arise. Thoughts like ’how this person would
react if she knows that I have been in this place?’ or simi-
lar are usually behind our privacy concerns and our defined
policies. Also, this social binding usually demands a certain
reciprocity, which means that, usually, if we trust something
about us to someone, we usually expect to receive the same
from the person in which we have trusted. What means when
a user decides to share her location with a friend, she expects
mainly her friend to do the same. Finally, people are unpre-
dictable and we cannot control when our friends are going
to need our location. On the contrary, when dealing with an
application, we do not have any social binding with it and
the reciprocity we expect is completely different, as we just
expect to receive a concrete service regarding our location.
In this case, privacy policies are more a tool to tailor a ser-
vice to our needs taking into account the reasonable concerns
that sharing our location with a completely unknown party
involves.

Usually, third party applications that make use of LBSs’
open APIs have really concrete finalities and that, with the
appropriate privacy controls probably helps for the elabora-
tion of effective, long-lasting privacy policies. Enabling the
use of geo-fences for the implementation of user-defined pri-
vacy policies could be a very interesting feature, because it
gives us the chance of associating a third party application
with the area in which it would potentially offer us the best
service. We can think in a bar recommendation system as an
example. For this case, we could trace geo-fences around the
different bar areas in our city, so every time we enter one of
these areas, we allow our location to be sent to the service,
and we receive the bar recommendations in our phone.

However, in what concerns to location sharing social net-
works, it gets more difficult to define effective and long last-
ing privacy policies, as the contexts and the reasons why we
get our location requested are much more diverse. That is
why new approaches involving reciprocity, such as Implicit
Authorization, look very interesting for this sort of services,
because they represent the social nature that motivates the
exchange of information in these services better than a long
list of user-defined privacy policies. This does not mean
that user-defined privacy policies should be completely ig-
nored in location sharing social networks, but I think that
they should carry a complementary role for techniques such
as Implicit Authorization more than the main role that they
have right now in the privacy mechanisms of location sharing
social networks.

In conclusion, I consider that LBSs should take different
approaches when sharing their user’s location data accord-



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

ingly to the destination of this information. If the recipients
are other people, one of the best ways LBSs have to protect
privacy is to ensure reciprocity in the shared information.
However, if the recipient is a third party application provid-
ing a certain service, LBSs should facilitate the necessary
tools for the users to describe the circumstances in which
they will be potentially using this service.

6 Conclusions

This paper provides an overview of several open APIs re-
cently released by different LBSs. Examining the different
mechanisms in these APIs for protecting location privacy re-
veals that providing user-defined privacy policies regarding
the third party application is the solution chosen by most API
providers, together with enabling authorized API calls on be-
half of the users through protocols such as OAuth. However,
these mechanisms are still far from perfect in their purposeof
avoiding undesired disclosures of location data. Privacy poli-
cies are frequently difficult to define for users, and now that
users should not only define them in regard to their friends,
but also in regard of these applications associated to an API
that they want to use, they get more difficult to implement
and also to memorize. On the other hand, OAuth succeeds in
protecting users’ credentials, but it is also sensitive to possi-
ble abuses mainly derived from too generous authorizations
to third party applications. The paper finally considers new
approaches such as geo-fences and implicit authorization in-
teresting, because they present features that could help for
the future deployment of more accurate and, at the same
time, simpler privacy policies.

References

[1] Foursquare api documentation. http://www.
google.com/url?url=http://groups.
google.com/group/foursquare-api/web/
api-documentation.

[2] Foursquare oauth howto. http://groups.
google.com/group/foursquare-api/web/
oauth.

[3] P. Bellavista, A. Küpper, and S. Helal. Location-based
services: Back to the future.IEEE Pervasive Comput-
ing, 7(2):85–89, 2008.

[4] M. Benisch, P. Gage, K. N. Sadeh, and L. F. Cra-
nor. Capturing location-privacy preferences: Quanti-
fying accuracy and user-burden tradeoffs, 2010.

[5] A. DuVander. Foursquare api fuels third-party app that
may be a better foursquare, March 2010.http://
blog.programmableweb.com/2010/03/30/
foursquare-api-fuels-third-party-app-
that-may-be-a-better-foursquare/.

[6] G. Friedl and R. Sommer. Cybercasing the joint: On
the privacy implications of geo-tagging, 2010.

[7] P. G. Kelley, P. Hankes Drielsma, N. Sadeh, and L. F.
Cranor. User-controllable learning of security and pri-
vacy policies. InAISec ’08: Proceedings of the 1st
ACM workshop on Workshop on AISec, pages 11–18,
New York, NY, USA, 2008. ACM.

[8] A. Kupper, G. Treu, and C. Linnhoff-Popien. Trax:
A device-centric middleware framework for location-
based services, September 2006.

[9] M. P. Scipioni and M. Langheinrich. IŠm here! privacy
challenges in mobile location sharing, 2010.

[10] A. Sheth, S. Seshan, and D. Wetherall. Geo-fencing:
Confining wi-fi coverage to physical boundaries. In
Proceedings of International Conference on Pervasive
Computing, pages 274–290, Berlin, Heidelberg, May
2009. Springer-Verlag.

[11] B. Thompson. Facing the future facebook style. Jan-
uary 2008. http://news.bbc.co.uk/2/hi/
technology/7178954.stm.

[12] E. Toch, J. Cranshaw, P. Hankes-Drielsma, J. Spring-
field, P. G. Kelley, L. Cranor, J. Hong, and N. Sadeh.
Locaccino: a privacy-centric location sharing applica-
tion. In Ubicomp ’10: Proceedings of the 12th ACM
international conference adjunct papers on Ubiqui-
tous computing, pages 381–382, New York, NY, USA,
2010. ACM.

[13] G. Treu, F. Fuchs, and C. Dargatz. Implicit autho-
rization for accessing location data in a social con-
text. Availability, Reliability and Security, Interna-
tional Conference on, 0:263–272, 2007.

[14] J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh.
Location-sharing technologies: Privacy risks and con-
trols. In In Research Conference on Communication,
Information and Internet Policy (TPRC, 2009.

[15] A. Ulin. With the new google latitude api, build
latitude and location into your app, May 2010.http:
//googlecode.blogspot.com/2010/05/
with-new-google-latitude-api-build.
html.


