
Recent Attacks On Tor

Juha Salo
Aalto University

juha.salo@aalto.fi

Abstract

Tor is an anonymous communication network [3]. If more
users are becoming interested in their privacy, the need
for such anonymous services might increase. The second-
generation Onion Router design Tor and its previous designs
seems to have been under research and there have been rather
recent papers on Tor’s vulnerabilities. We will discuss the
current attacks on Tor and make an effort to categorize them
for further analysis.

KEYWORDS: vulnerabilities, security, onion routing,
Tor

1 Introduction

According to [4] anonymity system Tor has an estimated
over 250,000 users and thousands of network relays. Tor [3]
is used for various activities online, such as web browsing,
file transfers and instant messaging. By the same authors, the
anonymity is ensured by preventing attackers to link com-
munication partners or multiple communications to or from
a single user. Further, more practical goals of Tor include
deployability, usability, flexibility and a simple design.

Terminology around Tor and Onion Routing is ambigu-
ous. We follow Onion Router Website’s [14] proposal. An
initial design for Onion Routing [7] was proposed in year
1996, and this design era is called the generation 0. The gen-
eration 1 [16] ranges from the initial design to the proposal
of Tor. Tor [3], also known as the second-generation Onion
Router, originated during years 2002 and 2005.

Dingledine et al. [3] presents and explains Tor. Tor, the
second-generation Onion Router is a protocol that intends
to anonymize network traffic in a low-latency manner. The
protocol provides many improvements over the old Onion
Routing design, hence Tor is called as the second-generation
Onion Routing. These improvements include perfect for-
ward secrecy, sharing one circuit to many TCP streams,
no traffic shaping, separation of "protocol cleaning" from
anonymity, leaky-pipe circuit topology, congestion control,
directory servers, variable exit policies, end-to-end integrity
checking, rendezvous points and hidden services.

2 Tor

All of the information in this chapter including 2.1 Protocol
and 2.2 Threat Model are based on Dingledine et al. [3],
unless stated otherwise.

2.1 Protocol

The basic idea of this overlay network is to construct a cir-
cuit, which consists of onion routers (OR) that know only
its predecessor and successor. User uses circuit to pass data
through the Tor network anonymously, as seen in Figure 1.
Data is wrapped in layers using symmetric cryptography and
in each onion router as the data goes through, a layer is un-
wrapped by using a symmetric key and relayed forward. At
the end of the circuit, onion router relays data to the intended
destination. The destination is not required to run Tor related
software.

Tor Network

OR

OR OR

OR
OR

OP

D

D - Destination
OP - Onion proxy
OR - Onion router
 - Connection

Figure 1: Overview of Tor [19].

Each onion router in the Tor network is connected to every
other onion router using TLS. TLS is used to prevent possi-
ble attackers from being able to modify data, impersonate an
onion router, and read the plaintext data by keeping the data
secret in the connections. Tor users use onion proxy (OP) to
receive directory information, create circuits in the network
and manage user application connections.

Streams are multiplexed in a circuit, thus a one circuit can
contain multiple TCP streams. Circuits are created preemp-
tively by the onion proxies and rotated periodically to avoid
traffic analysis. List of available onion routers that can be
chosen to the circuit are downloaded from a signed direc-
tory service. Upon creating a circuit, the user’s onion proxy
negotiates a symmetric key with every onion router in the
circuit, one by one as illustrated in Figure 2. Onion proxy al-
ways commands the last onion router in the circuit to extend
one hop further until all intended onion routers are included.
During this creation, onion router does not care who opens
the circuit, but onion proxy knows the onion router. In other
words, this handshake protocol is an unilateral entity authen-
tication and provides forward secrecy. After the circuit has
been established, relay cells can be sent.

A cell is a fixed-size, 512 bytes, unit of communication
containing a header and a payload. Overview of cell struc-

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

Onion Proxy Entry OR Exit ORMiddle OR
TLS[build_1]

E_K1[extend_2]
TLS[build_2]

E_K1[E_K2[extend_3]]
E_K2[extend_3]

TLS[build_3]

TLS[build_ack]

E_K2[build_ack]

E_K1[E_K2[build_ack]]

TLS[build_ack]

TLS[build_ack]

E_K1[build_ack]

Time

Figure 2: Circuit creation [2].

tures is presented in Figure 3. A cell is either a control cell
or a relay cell. A control cell is handled by the recipient,
whereas a relay cell contains end-to-end stream data.

CircID CMD DATA

CircID Relay StreamID

2 1 2 6 2 1 498 bytes

Digest Len DATACMD

2 1 509 bytes

Control cell structure

Relay cell structure

Figure 3: Cell structures [3].

For instance, when a user needs to send a packet through
Tor, a relay cell must be created. Onion proxy creates re-
lay cell in a iterative manner. Onion proxy calculates the
digest, then encrypts the cell payload for every hop up to tar-
get onion router. In this method, only the target onion router
will receive a valid digest after decryption. This topology is
also known as leaky pipe, which means the stream’s exit hop
can be selected from the circuit, in contrast to having the last
hop always be the exit point.

When an onion router needs to respond to the user, it en-
crypts the cell using a key negotiated during the circuit cre-
ation and sends the encrypted cell to the next onion router
in the circuit towards the user. After the user’s onion proxy
has received the cell, it iteratively unwraps it. The received

cell is decrypted using the keys shared with the onion routers
from the nearest onion router to the last. Similarly with di-
gest validation in the onion routers, the digest is validated in
the onion proxy after each layer is unwrapped to ensure from
whom the cell is from.

As a summary, in this protocol only the first onion router
in the circuit knows the user’s identity and the selected exit
onion router is the only one who is revealed the destination.
The onion routers in between only exchange encrypted in-
formation.

2.2 Threat Model

Tor does not protect against a global passive adversary. A
global adversary means that the attacker can observe all links
in the network. Tor’s threat model assumes that the adversary
has some fraction of the network under observation. Further,
the adversary is able to compromise some onion routers, op-
erate own onion routers, and delay, generate, modify, delete
traffic.

Traffic confirmation attacks are not in the focus of Tor’s
threat model. Traffic confirmation attack means, that an ad-
versary could confirm that two parties are communicating
with each other over Tor by observing patterns, such as tim-
ing and volume of the traffic. Instead, Tor’s increased focus
is to prevent traffic analysis attacks, where attacker tries to
determine in which points in the network a traffic pattern
based attack should be executed. In other words, in this type
of low-latency anonymous system the aim is to prevent at-
tackers to know where to attack.

3 Attacks

3.1 Probabilistic models

The Bayesian Traffic Analysis of Mix Networks [18] in-
troduces a probabilistic model for anonymous Mix networks
that can be used to analyze the network, for instance mea-
sure the security. The model is flexible and different vari-
ables are taken into account. The model is currently a work
in progress, and specially more research is required for pop-
ular low latency systems, such as Tor where in practice an
adversary can only observer a fraction of the whole network.

Probabilistic Analysis of Onion Routing in a Black-box
Model [6] follows on creating a model to evaluate how much
an adversary can know about users based on a priori proba-
bilistic behavior of the users. In this model, the design de-
tails are abstract, thus this model could be adapted to other
anonymity networks other than Tor. Two assumptions are
made, first, one user is responsible for one input and one
output. Second, an adversary is able to link input and out-
put to a user, if both of them are observable. In addition
to the mathematical theorems, the results indicate that the
worst user anonymity occurs when user becomes unique and
identifiable when the user chooses a destination the others
are unlikely to choose. Another occasion is when a user’s
choice is mistaken to a group’s choice, when user chooses a
destination the others prefer. In case of a common behavior
and distribution, the anonymity tends to be the best possible.

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

Future research might focus on more detailed design deci-
sions, such as entry guards impact on anonymity.

3.2 Entry and exit onion router selection at-
tacks

Compromising Anonymity Using Packet Spinning [15]
provides an attack that uses looping circuits and malicious
onion routers. The looping phase in this attack aims to block
other onion routers from being selected in circuits. Two as-
sumptions are made: circular circuits are not detectable and a
legitimate onion router will spend time in executing the cryp-
tographic calculations. In other words, the malicious onion
proxy creates loops in circuits to target onion routers to cre-
ate a denial-of-service attack. If the looping phase attack is
successful, then the malicious onion routers are more likely
to be selected in circuits, because the other legitimate onion
routers are busy. This advantage of the adversary can be used
to execute further attacks.

Low-Resource Routing Attacks Against Tor [2] intro-
duces an attack that benefit from lying resources information
to directories. False information benefits the low-resource
requirements set for this paper. Even though new versions
of Tor have active measurements to validate resource infor-
mation, such as router’s bandwidth, it is interesting to eval-
uate what effects this attack has on Tor. In addition, it is
possible to compromise onion routers with high bandwidth
and uptime, thus avoiding giving false information by actu-
ally taking control of a target that has these resources. The
false information can give the attacker an unfair fraction of
requests for new circuits in the Tor network. These onion
routers have increased probability to be chosen as entry and
exit onion routers.

By [2], after ensuring that malicious onion routers are
probable to be selected on both ends of the circuit, the next
step in the attack exploits the victim’s circuit creation pro-
cess. The introduced attack exposes the circuit even before
any payload data is sent from the user. The attack identifies
the path by recognizing patterns in the Tor’s circuit building
algorithm. This attack in a simulated environment with 66
onion routers having 6 malicious onion routers compromised
over 46 % of paths.

Bauer et al. [2] introduce methods for low-resource ma-
licious onion routers to handle their faked position, for in-
stance, to avoid bandwidth problems the malicious onion
router only handles new circuits and if the malicious onion
router detects to be in the middle of the circuit, then it can
break the circuit to fasten the process of becoming selected
as the first or as the last onion router. In addition, as the
Tor network becomes more congested, the probability of a
new circuit choosing a malicious onion router increases. A
related attack is focused on entry guards: flooding the net-
work with false router advertisement data could increase the
threshold for choosing entry guards, thus limiting the num-
ber of correct entry guards becoming selected. In theory,
it would be possible to displace all valid entry guards with
malicious ones. This attack assumes that the selection of
entry guards is based on some median on certain variables,
including bandwidth and uptime. In other words, onion
routers having better variables than average could become

entry guards.
According to Bauer et al. [2], verification of advertised

onion router data can help detecting faking onion routers.

3.3 AS and global level attacks

AS-awareness in Tor Path Selection [4] focuses on au-
tonomous systems (AS) in relation to Tor. In more detail,
Edman and Syverson [4] analyze the current potential threat
of AS-level adversaries against the Tor network and provide
evaluation of Tor’s path selection algorithm with some sug-
gestions.

As stated in [4], autonomous system is an independent
network, and Internet consists of these ASes. For instance,
when sending message using Tor, the traffic goes through
multiple different autonomous systems. More importantly, if
both the entry and exit onion routers are located at the same
AS, then a statistical correlation attack can be performed on
the AS-level.

Edman and Syverson [4] researched the assertion found in
anonymity literature, which states that it is less likely for an
AS to listen both the entry and exit onion routers when the
Tor network grows, because there are more users from differ-
ent places. The results show, that this is not completely accu-
rate, since after a point the amount of ASes is balanced and
new users occupy the old autonomous systems. The analysis
indicated a drop from 2004’s 38 % to 2008’s 22 % in overall
mean probability of a single AS having the opportunity to lis-
ten both ends of a communication. However, the change is a
rather small since in the year 2004 the number of relays were
33, and during the year 2008 the amount of relays was about
1240. Also, further analysis indicated a significant negative
impact on path diversity.

By [4], Tor’s improved path selection algorithm has had
improvement in preventing AS-level traffic analysis. These
improvements include requiring onion routers to be from
different /16 subnets and an entry guard limitation to entry
onion routers. Future improvements in Tor’s path selection
algorithm could implement country based diversity require-
ments or a more theoretically effective way of approximating
AS paths.

Large Scale Simulation of Tor [13] evaluates several
global passive adversary attacks in a simulated environ-
ment. The environment was build up using SSFNet event
based simulator and the test-network consisted of 6000 onion
routers. In the environment, three different global passive
adversary attacks were performed. These include connec-
tion start tracking attack, packet counting attack and stream
correlation attack.

As stated in [13], connection start tracking attack com-
pares a stream entering a network and an event when a stream
emerges from a network. However, because Tor multiplexes
streams it is difficult to recognize when a stream starts and
ends. Also, delays need to be taken in concern when evalu-
ating the possible timeframe of stream entering and leaving
the network. In the simulation, 98 % to 96 % of streams were
eliminated from the pool of possible candidates for commu-
nicating partners.

By [13], packet counting attack counts the packets en-
tering and leaving an onion router. With this information,

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

streams can be detected by comparing the number of packets
going through the onion routers. The non-eliminated streams
from connection start tracking attack could be further elim-
inated using packet counting attack. The results of packet
counting attack is explained very briefly. However, simple
packet counting attack is considered being effective [3].

As explained in [13], stream correlation attack can be di-
vided to fixed time window and peak extraction type of an
attack. In a fixed time window attack fixed time is set. Dur-
ing this time, packets are counted and this operation is re-
peated until attacker has sequence of packet counts. This
sequence is used to identify the stream in other observation
point. In peak extraction attack a stream is divided into frac-
tions and packets in these fractions are then counted. Peaks
in the stream can be observer and this information can be
used to identify the Tor stream. Fixed time window attack
was highly effective, 80 % of the streams were identified in
a low traffic network. The peak extraction attack is not as
effective as the fixed time window, though peak extraction
has advantages in networks with high delay values.

3.4 Traffic and time analysis based attacks

Low-Cost Traffic Analysis of Tor [12] presents an attack
that includes traffic-analysis techniques and how initiator’s
otherwise unrelated streams can be linked back. The term
low-cost comes means that the attacker is not required to be
a global adversary, instead only a partial view of the network
is assumed. Unlike in the the Tor’s designers’ beliefs, tim-
ing attacks are possible even with in limited threads model
[19]. By [12], since even one extra connection on a Tor node
results in higher load, an an attacker can connect through tar-
geted tor nodes and measure latencies of the messages. Esti-
mate of the traffic load of a Tor node can be analyzed against
known traffic pattern using techniques of traffic-analysis.

According to Murdoch and Danezis [12], a variant of this
attack contains a malicious server, that sends data to the vic-
tim in a pattern. This pattern is then observed by creating
a connection through over the candidate onion routers and
executing traffic analysis.

A cell counter based attack against Tor [10] introduces
a traffic analysis based active watermarking technique that
reveals the communication partners in a Tor circuit. Results
gathered from a real Tor network indicate this attack is ef-
fective (with low latencies, detection rate is near 100 %) and
difficult to detect. The test used a specific onion proxy with
circuit including a malicious entry onion router and an exit
onion router. In a normal case, this attack requires control
of both the ends of the circuit by an adversary. However, an
variation of this attack can be executed even if the attacker
has only control of an exit onion router. In this scenario, at-
tacker could create a man-in-the-middle attack between the
entry onion router and the user.

According to Ling et al. [10], the basic idea of the attack
is to embed a secret signal in the cell counter in the traf-
fic, that is then recognized by another malicious node in the
network to confirm the communicating parties. The secret
signal could be a sequence of bits. The signal injection can
be executed either on the exit onion router or on the entry
onion router. The injection works by manipulating the num-

ber of queued relay cells on each of the onion routers. For
instance, attacker might indicate three relay cells for ’1’ and
one really cell for ’0’. Due to network congestion and laten-
cies, some variation could occur during transfer of these cells
from onion router to another. However, the authors provide
mechanisms to mitigate these issues.

Browser-Based Attacks on Tor [1] presents a time based
attack that exploits browser behavior when tampering HTTP
traffic. In this attack, two malicious onion routers are re-
quired: an entry onion router and an exit onion router. The
evil entry onion router analyzes the user’s traffic for time
based patterns. The malicious exit onion router modifies the
HTTP-traffic to contain HTML or javascript based code that
generates calls to a malicious Web-server in recognizable
time patterns. In this attack, it is not required to have both
the malicious evil and entry onion routers in the same circuit.
If the user leaves the browser open after it has received code
added by a malicious exit onion router, then it is enough that
at some point of time a new circuit is created by the onion
proxy that contains attackers entry onion router.

By [1], traffic analysis is more difficult when there exists
other traffic, thus the noise ratio is increased. According to
the authors, this attack is first to take advantage of Tor’s exit
policies to create a clean circuit without disrupting noise. An
exit policy defines to what IP-addresses and ports is the cor-
responding exit onion router willing to relay traffic. Some
ports, such as SMTP 25 and file sharing ports 4661-5666,
are accepted in a minor group of onion routers, it is effective
to use one of these ports as the malicious Web-server port in
the attack code executed in a browser. When there are less
onion routers that serve certain ports, then the probability of
a malicious onion router becoming the entry onion router is
greater. This method assumes that onion proxy tries to open
a new circuit if the current circuit does not support these less
supported ports.

As stated in [3], Tor protocol accepts end-to-end timing
attacks as one of the threats. By [17], currently Tor seems to
implement entry guards. According to Abbott et al. [1], en-
try guards are routers that are selected randomly or choosing
from a set of trusted nodes, and only these selected routers
can act as entry onion routers. This changes the probabil-
ity distribution, but still adding a new malicous onion router
to Tor network increases the probability for malicous onion
routers to become selected, if entry guards are randomly cho-
sen.

By [1], defenses include disabling active content systems
and the use of HTTPS-protocol. Measures in active con-
tent systems, such as disabling Javascript prevents Javascript
based code execution. Also, in a situation where user turns
Tor off and open Web-page could expose identity, an add-
on software could disable this kind of vulnerable open Web-
pages. However, disabling this kind of systems might have
negative impact on user experience. HTTPS-protocol pre-
vents man-in-the-middle attacks, in other words the exit
onion router can not modify or view the HTTP tunneled over
SSL if user uses this protocol to view Web-pages. In prac-
tice, HTTPS-protocol is not that secure, because users often
accept self-signed certificates despite a Web-browser’s warn-
ings.

A Practical Congestion Attack on Tor Using Long

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

Paths [5] is an attack that reveals an entire path of a
user in a modern Tor network. This attack combines
exit onion router’s HTTP-stream modification and selective
onion router congestion attack. The path is then exposed by
evaluating changes in latencies. Three assumptions are set
in order to create a successful attack. First, onion routers do
not add artificial delays when routing packets. Second, di-
rectory servers provide list of all onion routers. Last, users
can establish circuits of arbitrary lengths.

By [5], the attack can be separated in three different
phases, which include modification of HTTP-stream on the
exit onion router, observing latencies and a congestion at-
tack. An attacker must have a malicious onion router as
the exit onion router on a victim’s circuit. Then, an attacker
modifies either a Javascript or HTML-based code, that sends
requests to attacker’s server. The requests are sent with pre-
defined time intervals and contain local system time to ease
monitoring latencies. It is worth mentioning, that Javascript-
based modification is more transparent to user and popular
third party software such as Tor Button plugin and Privoxy
does not disable Javascript by default.

As stated in [5], a malicious Web-server stores and ana-
lyzes the requests received by the attack code. The Tor net-
work is not idle, thus the latencies vary, so an attacker must
calculate a baseline latency, which is then compared to the
measurements received during a congestion attack.

In [5], the congestion attack is done by exploiting a flaw
in Tor’s path building design that allows arbitrary length cir-
cuits that loop certain onion routers. It is possible to con-
struct a long circuit, that contains the same router repeat-
edly, since each onion router only knows its predecessor and
successor. To exploit this principle, an attacker can include
a target onion router in the circuit, then connect to two or
more other Tor routers, after the target onion router can be
included again. In target router’s packet scheduling, the sin-
gle circuit is seen as multiple different circuits. This conges-
tion attack requires limited bandwidth from the attacker, and
is thought as an effective denial-of-service attack as well.

According to Evans et al. [5], all onion routers are sus-
pected for being in the victim’s circuit, thus searching the
routers using the congestion attack is challenging. In addi-
tion, Tor circuit switching occurs every 10 minute by default,
so the time frame when attacker’s controls the exit onion
router is limited, which requires optimization of the attack.
Optimization could be achieved by pre-building moderate
size circuits, choosing reliable routers and estimating guard
onion router candidates to reduce the number of suspected
onion routers.

Evans et al. [5] notes that this attack worked in a real ex-
periment conducted in real Tor network, further stating that
it is practical and effective. Congestion attacks that rely on
a single congestion circuit are not practical in a modern Tor
network. Since the network fluctuations are more lively, the
probability to false positives and false negatives is greatly
increased. For instance, attack suggested by Murdoch and
Danezis [12] did not work, because it was not possible to
separate normal congestion from congestion caused by an
attacker.

By [5], disabling active content systems prevents the use
of a signal generator injected by modifying HTTP-streams.

However, the long path congestion attack is a challenging
problem. Limiting the path length would be the key to pre-
vent this type attack. Current Tor design could implement
a method method of tracking the length of a circuit. Even
if circuit lengths would be controlled, this does not prevent
attacker from constructing multiple circuits. For instance,
attacker could create a circuit to another onion proxy, that
creates a new circuit and so on. A full solution to this prob-
lem is not yet known.

How Much Anonymity does Network Latency Leak?
[9] propose two attacks on low latency anonymous systems,
such as Tor: passive linking attack and client location attack.
Both attacks benefit from a malicious server observing the
latencies of a connection over an anonymous network.

As stated in [9], passive linking attack requires user to cre-
ate two connections to a malicious server or connect to a two
different malicious server. After this first step, a common
distribution of round trip times (RTTs) can be assumed that
is used to recognize the user.

Also by [9], client location attack tries to measure the RTT
between victim and the entry onion router. This attack uses a
malicious Web-server and a malicious onion router. The ma-
licious onion router enables a clogging attack to determine
the onion routers in the victim circuit and their RTT by creat-
ing a circuit through them. After the RTT between the entry
onion and victim is known, the attacker analyses RTT be-
tween candidate routers and the entry router, in order to gain
information about the victim’s location. Different methods
could be applied to measure RTT between two hosts without
cooperation of either, for instance using network coordinate
systems and pinging or King technique [8].

In [9], both of the attacks were tested and the results in-
dicate that these attacks work. However, there is a lot of
room for improvements and optimizations. Much better re-
sults were gained, when user used an application that period-
ically sends timestamps to a server. In Tor’s protocol, authors
suggest that adding artificial delays might be unavoidable, if
no new path selection algorithms are adapted.

Passive-Logging Attacks Against Anonymous Com-
munications Systems [21] examines a predecessor attack
and an intersection attack. The predecessor attack [20] pro-
vides probability values to reveal user’s identity. By [21],
in predecessor attack, the attacker logs communication sus-
pected to be coming from the user and because in Tor cir-
cuits are closed and re-established over time, thus the user’s
address in the network is seen more often than others. This
way, attacker can identify the stream originator over time.

According to Wright et al. [21], in intersection attack
the adversary keeps a list of addresses that have been active
when the victim has contacted his destination. Over time,
the list size decreases and it is more probable to identify the
victim.

3.5 Protocol vulnerabilities

Effective Attacks in the Tor Authentication Protocol [22]
introduces a vulnerability in the Tor authentication protocol
during concurrent runs. The Tor authentication protocol is
used during the circuit initialization, when the onion proxy
negotiates a shared key with each of the onion routers. Zhang

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

[22] states that Tor authentication protocol will lead to incon-
sistency in session keys among two communicating parties
and it is not secure in concurrent environment. The attack
works by interleaving messages of several Tor authentica-
tion protocol instances. Further, the author proves this by
using a mathematical model. However, no practical results
were provided. In addition, an improved version of the Tor
authentication protocol is proposed, that solves this vulnera-
bility.

On the risks of serving whenever you surf [11] focuses
on an attack that reveals bridge’s IP address by visiting cer-
tain Web-sites. Since the list of onion routers can be eas-
ily downloaded from the directory service, it is easy for an
authority to block access to Tor by blocking the access to
these publicly listed routers. To counteract this censorship,
a bridge was introduced in December 2007. A bridge is a
unlisted first-hop relay, served by Tor end-users. Because
there is a great number of end-users, the censorship author-
ities face difficulties, since now they have to block all the
publicly listed onion routers and these bridges. Bridges in-
formation sharing is limited to frustrate the gathering of all
bridges in the Tor network. However, the information should
not be too scarce, since a bridge’s user should receive the
bridge information somewhere in order to connect to it.

By [11], three bridge related architectural vulnerabilities
make this attack possible: because bridges are easy to find,
a bridge accepts connection when its operator (a person who
operates the bridge) is using Tor, and bridge user’s (a per-
son who wants to use bridge) traffic interferes with the traf-
fic originating from the bridge operator. The attack exploits
these weaknesses, thus the attack scenario can be separated
in three phases: bridge discovery, bridge winnowing and
bridge confirmation.

As stated in [11], bridge discovery should be balanced.
Bridge users should be able to obtain bridge information, but
not too easily to prevent collection of bridge information for
censorship purposes. Bridge descriptors are given by bridge
authority, and limited by IP address range. In other words,
certain ranges are only given certain distinct bridges during
some period of time. The authors were able to gather many
descriptors by using Tor’s exit onion routers to get different
sets each time. Also, a candidate bridge can be validated
easily, since bridges do not try to hide that they are bridges.
A simple test on a bridge’s default ports is sufficient, thus
a censorship party can poll even a quiet large range of ad-
dresses for bridges. These large ranges could be country or
organization specific.

According to McLachlan and Hopper [11], bridge win-
nowing means that an adversary checks if a bridge operator
is serving and surfing. In other words, since bridge automat-
ically accepts connections when the operator is using Tor,
we can assume that if the bridge is offline, then the opera-
tor is not using Tor. To confirm if the bridge is serving, an
attacker could just connect to bridge using IP address and
correct port number. The next step in winnowing is to corre-
late online/offline-status of bridges to a known information
about victim. Such information could be for instance some
time information of "touches" on a Wiki-page. By compar-
ing the times of victim using some service, we compare it to
bridges that were online during that time period. In this way,

we can limit the possible candidate bridges to contain only
the ones that were online. The test results of this phase sug-
gest to avoid in a long term operating a bridge while using
some pseudonymous forum.

By [11], bridge confirmation uses circuit clogging attack
[12] to identify the bridge from the pool of candidate bridges.
As stated in [11], a bridge operator can be confirmed without
middleman router probing to be an originator of a connection
by a circuit clogging attack that is slightly modified. Several
mitigation methods were provided, however all of them re-
quire limitation in the service level provided to the bridge
users.

4 Conclusion
We introduced recent work on attacks against Tor and made
an effort to sort the attacks into five different categories:

• Probabilistic models [18, 6] aim to provide information
about the network, for instance measurements of secu-
rity and anonymity, based on mathematical models.

• Entry and exit onion router selection attacks [15, 2] in-
crease the probability of an adversary’s onion routers
to be selected as entry and exit routers in the victim’s
circuit.

• AS and global level attacks [4, 13] require an adversary,
which has access to a great portion of the network. It
is worth mentioning, that Tor’s threat model does not
protect global passive adversary attacks [3].

• Traffic and time analysis based attacks [12, 10, 1, 5,
9, 21] observe and possibly interact with the Tor net-
work for instance by creating distinguishable patterns
to weaken anonymity.

• Protocol vulnerabilities contain two attacks [22, 11]
that introduce weaknesses in the actual protocol design.
First, there is a vulnerability in the Tor’s authentication
protocol, however the implications of this attack is un-
known to us. The second attack exploits Tor’s bridge-
service, thus revealing the IP-address of a bridge.

References
[1] T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C.

Price. Browser-based attacks on tor. In PET’07: Pro-
ceedings of the 7th international conference on Privacy
enhancing technologies, pages 184–199, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[2] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-resource routing attacks against tor. In
WPES ’07: Proceedings of the 2007 ACM workshop on
Privacy in electronic society, pages 11–20, New York,
NY, USA, 2007. ACM.

[3] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
the second-generation onion router. In SSYM’04: Pro-
ceedings of the 13th conference on USENIX Security

Aalto University, T-110.5290 Seminar on Network Security Fall 2010, updated 2012-05-06

Symposium, pages 21–21, Berkeley, CA, USA, 2004.
USENIX Association.

[4] M. Edman and P. Syverson. As-awareness in tor path
selection. In CCS ’09: Proceedings of the 16th ACM
conference on Computer and communications security,
pages 380–389, New York, NY, USA, 2009. ACM.

[5] N. S. Evans, R. Dingledine, and C. Grothoff. A
practical congestion attack on tor using long paths.
In SSYM’09: Proceedings of the 18th conference on
USENIX security symposium, pages 33–50, Berkeley,
CA, USA, 2009. USENIX Association.

[6] J. Feigenbaum, A. Johnson, and P. Syverson. Proba-
bilistic analysis of onion routing in a black-box model.
In WPES ’07: Proceedings of the 2007 ACM work-
shop on Privacy in electronic society, pages 1–10, New
York, NY, USA, 2007. ACM.

[7] D. M. Goldschlag, M. G. Reed, and P. F. Syverson.
Hiding routing information. In Proceedings of the First
International Workshop on Information Hiding, pages
137–150, London, UK, 1996. Springer-Verlag.

[8] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
estimating latency between arbitrary internet end hosts.
In Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, IMW ’02, pages 5–18, New
York, NY, USA, 2002. ACM.

[9] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
much anonymity does network latency leak? ACM
Transactions on Information and System Security,
13(2), February 2010.

[10] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia.
A new cell counter based attack against tor. In CCS
’09: Proceedings of the 16th ACM conference on Com-
puter and communications security, pages 578–589,
New York, NY, USA, 2009. ACM.

[11] J. McLachlan and N. Hopper. On the risks of serv-
ing whenever you surf: vulnerabilities in tor’s blocking
resistance design. In WPES ’09: Proceedings of the
8th ACM workshop on Privacy in the electronic soci-
ety, pages 31–40, New York, NY, USA, 2009. ACM.

[12] S. J. Murdoch and G. Danezis. Low-cost traffic anal-
ysis of tor. In SP ’05: Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pages 183–195,
Washington, DC, USA, 2005. IEEE Computer Society.

[13] G. O’Gorman and S. Blott. Large scale simulation
of tor: modelling a global passive adversary. In
ASIAN’07: Proceedings of the 12th Asian comput-
ing science conference on Advances in computer sci-
ence, pages 48–54, Berlin, Heidelberg, 2007. Springer-
Verlag.

[14] Onion-Info. Onion routing, 2006. http://www.
onion-router.net/.

[15] V. Pappas, E. Athanasopoulos, S. Ioannidis, and E. P.
Markatos. Compromising anonymity using packet
spinning. In Proceedings of the 11th Information Se-
curity Conference (ISC 2008), September 2008.

[16] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous connections and onion routing. In SP ’97:
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, page 44, Washington, DC, USA, 1997.
IEEE Computer Society.

[17] Tor Project. FAQ, 2012. https://www.torproject.
org/docs/faq.html.en#EntryGuards.

[18] C. Troncoso and G. Danezis. The bayesian traffic anal-
ysis of mix networks. In E. Al-Shaer, S. Jha, and A. D.
Keromytis, editors, Proceedings of the 2009 ACM Con-
ference on Computer and Communications Security,
CCS 2009, Chicago, Illinois, USA, November 9-13,
2009, pages 369–379. ACM, 2009.

[19] R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini.
Design principles for low latency anonymous network
systems secure against timing attacks. In ACSW ’07:
Proceedings of the fifth Australasian symposium on
ACSW frontiers, pages 183–191, Darlinghurst, Aus-
tralia, Australia, 2007. Australian Computer Society,
Inc.

[20] M. K. Wright, M. Adler, B. N. Levine, and C. Shields.
The predecessor attack: An analysis of a threat to
anonymous communications systems. ACM Trans. Inf.
Syst. Secur., 7(4):489–522, 2004.

[21] M. K. Wright, M. Adler, B. N. Levine, and C. Shields.
Passive-logging attacks against anonymous communi-
cations systems. ACM Trans. Inf. Syst. Secur., 11(2):1–
34, 2008.

[22] Y. Zhang. Effective attacks in the tor authentication
protocol. In NSS ’09: Proceedings of the 2009 Third
International Conference on Network and System Secu-
rity, pages 81–86, Washington, DC, USA, 2009. IEEE
Computer Society.

http://www.onion-router.net/
http://www.onion-router.net/
https://www.torproject.org/docs/faq.html.en#EntryGuards
https://www.torproject.org/docs/faq.html.en#EntryGuards

	Introduction
	Tor
	Protocol
	Threat Model

	Attacks
	Probabilistic models
	Entry and exit onion router selection attacks
	AS and global level attacks
	Traffic and time analysis based attacks
	Protocol vulnerabilities

	Conclusion

