
Novel CAPTCHA schemes

Ville Saalo
Helsinki University of Technology

Ville.Saalo@iki.fi

Abstract
A CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart) is a program that can
generate and grade tests that most humans are able to solve,
yet current computer programs are not. They are used to
protect various kinds of online services from advertising
spam, brute force attacks and denial of service by automatic
computer programs. The development of CAPTCHAs has
been an evolutionary process where new CAPTCHAs are
designed to resist the current attacks and attacks are de-
veloped to break the new CAPTCHAs. This same process
has been present in other security related software such as
spam, viruses and cryptography as well. This paper stud-
ies an attack against the Microsoft CAPTCHA and applies
the lessons learned into the design of two novel CAPTCHA
schemes.

1 Introduction
Three main types of CAPTCHAs have been identified: text-
based (a list of examples can be found from [11]), sound-
based (such as [9, 17]; evaluation of existing systems in [1])
and image-based [6, 8, 16, 19, 20, 24] schemes. Text-based
schemes typically rely on distorting text images, hopefully
rendering them unrecognizable to computer programs but
still recognizable for humans. Sound-based schemes typi-
cally require the users to solve a speech recognition task,
while the image-based schemes require the users to perform
an image recognition task. Of these classes the text-based
CAPTCHAs are the most used.

CAPTCHAs are technically a class of HIPs: Human Inter-
active Proofs (or Human Interaction Proofs [2]). The differ-
ence is that the data and algorithms of a CAPTCHA should,
by definition, be publicly available. An example of a HIP
that was not a CAPTCHA would be an image-based test
which would have a secret database of images. In [7] it is
suggested that HIPs should be public (i.e. CAPTCHAs) to
encourage scientists to work on the problem of artificial in-
telligence.

This paper focuses on text-based CAPTCHAs.1 Text-
based CAPTCHAs are comprised of a segmentation prob-
lem and one or more recognition problems. The segmen-
tation problem means that before being able to recognize
individual characters the characters must be isolated from
the background, separated from one another and placed into

1For the purposes of this paper it is not important to distinguish
CAPTCHAs and HIPs so all HIPs will be discussed as CAPTCHAs from
now on.

Figure 1: An example of a Microsoft CAPTCHA [13]

the correct order. The recognition problem is about recog-
nizing the characters. Usually the characters are somehow
scaled, warped, rotated or otherwise distorted to make this
part harder. It has been shown that computers are better at
solving the recognition problem than the segmentation prob-
lem, and that when solving a recognition problem they can
even beat humans [2].

The rest of this paper is organized as follows. Section 2
presents the Microsoft CAPTCHA and an attack that ef-
fectively broke the scheme. Section 3 presents two new
CAPTCHA schemes to which ideas have been drawn from
the attacks against the Microsoft CAPTCHA. Section 4 dis-
cusses the general design principles of CAPTCHAs and ap-
plies them to the new schemes. Section 5 contains fur-
ther discussion on parametrizing and attacking these new
schemes, and finally Section 6 summarizes the conclusions.

2 The Microsoft CAPTCHA

As character recognition has been proven to be an easy
task for computers, the Microsoft CAPTCHA was designed
specifically to rely on the segmentation challenge, i.e. the
fact that segmentation is difficult for computers [13]. In [3]
the authors found out that using thick, non-intersecting arcs
around the characters would make their CAPTCHA difficult
for computers yet easy for humans to solve. An example of
the Microsoft CAPTCHA is presented in Figure 1.

For automatic solving of their CAPTCHA they proposed a
segmentor which would have had a 1/10,870 to 1/10,518,300
chance of a correct segmentation [4]. This, especially when
combined with the uncertainly of the recognition part, would
have been well beyond their established maximum accept-
able success rate of automatic scripts, 1/10,000. In the same
paper they also demonstrated the breaking of several other
commercial CAPTCHAs, achieving success rates that were
orders of magnitude better than 1/10,000.

The Microsoft CAPTCHA was effectively broken by a
segmentation attack presented in [23]. They reported a seg-
mentation success rate of higher than 90% and that segment-
ing one challenge took approximately 80 milliseconds on an



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 2: An example of how the attack against the Mi-
crosoft CAPTCHA works [23].

ordinary desktop computer. The attack has the following
stages, demonstrated in Figure 2:

1. Pre-processing
At this stage the CAPTCHA image is reduced into a
black and white image with just one bit of color infor-
mation per pixel. Pixels with a high intensity are con-
verted to white, those with a lower intensity to black.

2. Vertical segmentation
The image is segmented into chunks at those pixel
columns where there are no foreground (i.e. black) pix-
els.

3. Color filling segmentation
At this point connected components inside each chunk
are detected by applying a flood-fill coloring algorithm
into all black components until none are left.

4. Thick arc removal
Thick arcs are removed based on their pixel count, lo-
cation on the image and shape.

5. Locating connected characters
At this point the algorithm locates those connected
characters that escaped the vertical segmentation and
color filling phases. This relies on the observation
that every challenge has exactly 8 characters and works
based on the assumption that wide components contain
more than one character.

6. Segmenting connected characters
Finally, the connected characters are segmented by di-
viding their chunks evenly.

3 New schemes
In this section two new CAPTCHA schemes, motivated by
the aforementioned attack on the Microsoft CAPTCHA, are

Figure 3: Transparent letter CAPTCHA. The random string
"GHAERY" is being displayed.

presented. The key objective of designing these CAPTCHA
schemes was that they should be resistant to the parts of
the attack on the Microsoft CAPTCHA. Discussion on these
schemes is presented in Sections 4 and 5.

3.1 The transparent letter scheme
The first scheme we have dubbed the transparent letter
scheme. This is because the letters were made to overlap
each other so much that they had to be made transparent to
be readable. The transparency is reflected in the fact that
where two grey letters overlap, a dark-grey area is shown.
An example of this scheme is presented in Figure 3.

There is also clutter that is designed to confuse computer
programs. Two kinds of clutter exists in the scheme: large
and fine. Large clutter consists of shapes of familiar objects,
such as animals, that are roughly of the same size as the let-
ters. Fine clutter is more like noise and forms no recogniz-
able shapes, serving to introduce areas of various shades of
grey to places where there are no letters or where there is no
overlap. The fine clutter also serves to break the solid white
background and solid grey foreground surfaces.

The pre-processing stage should be more difficult in this
scheme than in the Microsoft CAPTCHA as this image can-
not be reduced to a one bit per pixel image without losing
a lot of information: it is important to distinguish the back-
ground from at least two levels of foreground – letters and
overlapping letters. The vertical segmentation phase would
also have only limited use with this scheme as the charac-
ters are connected throughout the entire text and there are no
empty vertical pixel columns. Only the intensities of pixel
columns could be counted and even that approach should not
yield much information due to the clutter.

The color filling algorithm is also what should be espe-
cially confused with this scheme. Firstly, the darkest areas
are parts of multiple objects, and secondly, there are actually
no well-defined surfaces to fill because of the fine clutter.

The thick arc removal phase is designed specifically
against the Microsoft scheme but with the transparent letter
scheme the equivalent of this phase would be the recognition
of large clutter objects. The attack on Microsoft CAPTCHA
relied here heavily on the heuristic that the arcs had a low
pixel count compared to letters. Here, some of the large
clutter objects may even be larger than the smallest letters.
Another heuristic the attack on the Microsoft scheme used
was that the arcs had no "loops" or "holes": they were just
lines. Letters such as A, R and B have holes in them. With



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 4: The Kanizsa triangle [22]

the transparent letter scheme this heuristic is thwarted by the
addition of random holes into the large clutter objects. Addi-
tionally, the holes are of realistic shapes and sizes and could
be found from the letters as well. Finally, the arcs were re-
moved based on their location in the challenge: objects close
to the image edges were classified as arcs. To neutralize this
attack the positions of large clutter objects are not limited in
that sense: in the example image (Figure 3), for example, the
letter Y is the rightmost object, but the cat shape is the left-
most. There is even a shape of a hand in the middle of the
text, disconnecting letters A and E altogether.

3.2 Kanizsa CAPTCHA
The next scheme, called the Kanizsa CAPTCHA, is based
on the Kanizsa triangle optical illusion where a triangle is
perceived even though one is not actually drawn [21]. A
Kanizsa triangle is presented in Figure 4. The creation of this
kind of CAPTCHA challenge is demonstrated in Figure 5.
The CAPTCHA challenge consists of a random background,
round blobs in this case, overlaid with white text.

A similar approach was taken with the WaterCap
CAPTCHA [15] but it was quickly cracked [14]. However,
our scheme is more secure because the background is ran-
domly created and the fonts are randomly chosen and dis-
torted, while WaterCap used fixed image sprites with some
easy to remove noise.

The vertical segmentation phase of the attack on the Mi-
crosoft CAPTCHA could probably be used to identify the
locations of the letters to some accuracy. However, the next
phase, the color filling segmentation (CFS), would be use-
less with the Kanizsa CAPTCHA scheme, as trying to color
white objects on white background would result in a colored
background with no new information revealed.

The closest equivalent to the thick arc removal phase
would be the removal of those objects that are not a part of
the outline of any character. This leaves only those objects
that help outline the characters, but this can be countered by
using random clutter as the background. This does, however,
make the CAPTCHA significantly more difficult to humans
as well because random clutter provides little hints on where
the character contours lie. As a result the amount of back-
ground paint has to be increased, though increasing it too
much would result in plain white text on black background,
which would not be a very practical CAPTCHA challenge.

Figure 5: An example of a Kanizsa CAPTCHA challenge.
To create this kind of a challenge the computer first creates
a random background (top). Then it overlays it with some
white text (middle) to get the final result (bottom).

Clearly a balance between the shapes and amount of back-
ground objects or clutter needs to be found by experimental
studies.

The next phase of the attack on the Microsoft CAPTCHA,
locating connected characters, is not applicable to the
Kanizsa CAPTCHA. Firstly, the characters are white just
like the background, and secondly, cramming the letters too
close to each other would probably make the CAPTCHA too
hard to read for humans.

The final segmentation phase would then have to recog-
nize which background objects belong to which characters.
How this phase is done probably highly depends on the
scheme that was used to create the background. If the ob-
jects are random but there are many of them, the characters
could be segmented based on where the largest white areas
are. If the objects are of some given shape and there are less
of them, the segmenter would probably have to rely on some
other tactic, such as machine learning.

4 Design principles
These new schemes, the transparent letter scheme and
the Kanizsa CAPTCHA, were designed to be resistant to
the type of attack that was used to break the Microsoft
CAPTCHA. However, CAPTCHAs usually should follow
some other design principles as well. In [7] the authors of
the Drag and Drop CAPTCHA also identified the following
objectives that could be applied to virtually any CAPTCHA:

1. Simplicity of operation
It is clear that this point is satisfied since both of the
schemes only require the user to be able to recognize
and input letters, i.e. no special expertise is needed.

2. Test must be easy for humans
It seems to us that these tests are not more difficult to
humans than the existing text-based CAPTCHAs. The
difficulty can also be adjusted with various parameters.
However, the true difficulty of these schemes with var-
ious parameters is to be found out in experiments with



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

humans.

3. Test must be difficult for current computer programs
Both of the schemes were designed with the attack
on the Microsoft CAPTCHA in mind so they should
be more resistant against the types of techniques used
against the Microsoft CAPTCHA. Again, the schemes
would have to be evaluated with machine learning ex-
perts for more insight into this matter.

4. Higher safety with lower bandwidth consumption
We found out that the CAPTCHA images Microsoft
is using today[12] are from five to seven kilobytes in
size and saved in the JPEG format. The CAPTCHA
schemes presented in this paper seem to match that size
easily when a high enough JPEG compression is used.
They may need to be presented slightly larger than the
current Microsoft CAPTCHAs which are 218 × 24 pix-
els but that does not have a significant impact on the file
sizes.

5. Easy to implement and maintain
We believe that especially the Kanizsa CAPTCHA
would be easy to implement. The transparent letter
scheme is, however, more complex and will be more
difficult to implement. We estimate that the implemen-
tation would still not be significantly more difficult than
implementing, for example, the Microsoft CAPTCHA.

With these high level objectives in mind one can then
make some lower level design choices on the implementa-
tion of the CAPTCHA. Six choices were identified in [4]:

1. Character set: The character set to be used in the chal-
lenge.
Clearly some characters should be left out because they
would be too easy to confuse with similar characters.
This would be the case with l, I and 1, for example. Also
the Kanizsa CAPTCHA examples in this paper feature
Q as the final letter, which could be easily confused with
the letter O. Choosing upper case letters and digits and
removing those that may be confused with each other
we end up with roughly 30 possible characters2. If we
allow the text length to vary from 8 to 10 characters, this
would leave us with 308+309+3010 or approximately
6.1× 1014 unique challenge strings.

2. Affine transformations: Translation, rotation and scal-
ing of characters.
Especially translation and scaling should be used with
the transparent letter scheme. Some rotation could be
applied to both schemes.

3. Adversarial clutter: Random noise or shapes that inter-
sect with the characters and themselves.
With the transparent letter scheme the clutter has al-
ready been defined in Section 3.1. The Kanizsa
CAPTCHA could also be strengthened by adding white
to areas where there are actually no letters.

2For example, the personal identity number used in Finland has a check
character that can be one of 31 different characters.[18]

4. Image warp: Elastic deformations of the challenge im-
age.
Image warp makes it more difficult to separate the back-
ground and foreground objects and textures from each
other in the pre-processing state. After the segmenta-
tion phase it also makes the recognition problem more
difficult. The text in Figure 5 demonstrates an elastic
deformation, "rippling", in all the characters, especially
well seen in the characters 7 and M in the bottom image.
The letters H, A and E as well as the hand-shaped large
clutter object in Figure 3 demonstrate a global warp ef-
fect. There are also some local ripple-like deformations
present, most notably at the upper left corner of the let-
ter R. Clearly both schemes can use and would benefit
from using some image warp. However, it should be
noted that it was found out in [4] that the human perfor-
mance decreases considerably when high levels of local
or global warp are applied to the text.

5. Background and foreground textures: Textures that are
used to form a colored image based on the grayscale
image generated by using the previously mentioned
choices.
Colored textures do not apply well to either schema pre-
sented in this paper. However, the fine clutter in the
transparent letter scheme is already a texture designed
to confuse computer programs.

6. Language model: Whether the challenges should use
random strings or words from a dictionary.
Using real words instead of random strings makes it
easier to solve CAPTCHA challenges as words provide
contextual clues on what the individual letters might be.
Using real words instead of random strings, however,
has the inherent drawback that the selection of available
challenge texts decrease dramatically. Observing lists
of English words of five, six, seven and eight letters [5]
we can extrapolate the numbers of nine and ten letter
words to about 37000 and 44000 respectively. There
could then be only about 111000 unique CAPTCHA
challenge strings that would be from eight to ten let-
ters long. However, the words could also be longer than
this as it is typically faster to type real words than ran-
dom character strings. Increasing the allowed length of
the words would also increase their amount.

As the backgrounds are random and texts can be dis-
torted, it seems to the authors that these numbers could
well be enough, especially if only used for the first time
a person or a bot tries to solve the challenge. If the first
try is incorrect the subsequent challenges could be ran-
dom strings. This vastly expands the solution space and
decreases computer bots’ chances of solving the chal-
lenge correctly. This kind of extra protection system
would be somewhat like the two systems presented in
[8]: the token bucket scheme and the Partial Credit Al-
gorithm (PCA). The token bucket scheme works so that
if the bot answers wrong multiple times, it then has to
answer correctly to two consequent challenges to pass
the test. The PCA system on the other hand accepts so-
lutions that are almost correct if there are two consec-
utive solutions like that. Both of these schemes could



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

Figure 6: A Kanizsa CAPTCHA challenge using shapes of
animals, paw prints and such as background objects.

be used with both the transparent letter scheme and the
Kanizsa CAPTCHA as well.

5 Discussion

Both of the schemes presented in this paper have parameters
that could be adjusted. They could both use different fonts
even for different letters in the same challenge. This would
confuse automatic programs trying to solve the challenges
as all characters could be represented in several, slightly dif-
ferent ways. An example of different fonts can be seen in
Figure 3 where the letter A has very round features but the
letter Y has sharp corners and straight lines. The font used
for the letter H is somewhere in between these two.

An interesting parameter in both schemes is the clutter.
Figure 3, for example, has shapes of animals. There is noth-
ing to prevent these shapes to be changed into, say, shapes of
cars for a web site about cars. However, the best protection
against bots is achieved when the clutter object selection is
as large as possible. The objects could even be just random
shapes but then one has to take care that the pixel counts and
shapes do not give them away as was the case with the at-
tack against the Microsoft CAPTCHA. Another risk in using
completely random shapes is that they may end up resem-
bling too much like real characters which would hinder the
ability of humans to solve the challenges as well.

The Kanizsa CAPTCHA also does not need to have a
background of round blobs: it could use the same kind of
clutter objects as the transparent letter scheme uses. A web-
site about pets could have the background created out of sil-
houettes of pets, such as in Figure 6.

The length of the challenge strings is an obvious param-
eter. The Microsoft CAPTCHA was broken partly because
the strings were always eight characters long, so it is rec-
ommended that the texts in the new schemes be of random
lengths.

The attack on the Microsoft CAPTCHA, presented in Sec-
tion 2, is a practical example of the general CAPTCHA solv-
ing framework later presented in [10]. In that paper the
authors also described another way of solving CAPTCHAs
besides character recognition and segmentation: cloning.
Solving CAPTCHAs by cloning is easiest if the CAPTCHA
source code is available or if it is easy to create CAPTCHA
challenges that are identical to the one being targeted. The
basic idea is to generate challenges that all begin with dif-
ferent characters, compare them with the challenge that is
being solved, keep the best matches and expand those chal-
lenges that were kept, character by character, until the entire

CAPTCHA is matched. We believe that this might well be
a viable tactic against the Kanizsa CAPTCHA, but given all
the variation in the transparent letter scheme the search space
would probably be too large for this approach.

6 Conclusions
This paper studied an attack on the Microsoft CAPTCHA
and learned from the weaknesses that made the attack pos-
sible. As a result two new CAPTCHA schemes were devel-
oped and presented: the transparent letter scheme, which is
based on heavily overlapping letters and large clutter objects,
and the Kanizsa CAPTCHA, which relies on an optical illu-
sion of outlines of letters that really do not exist. Preliminary
analysis of the proposed schemes shows that they are simple
for humans to operate yet difficult to be attacked using the
mechanisms described in [23]. They are also versatile in that
they can be customized with various parameters.

As to the future work, both of the new CAPTCHA
schemes still need to be implemented as real programs. The
challenges then have to be evaluated with users and their pa-
rameters tweaked according to the experiences gained. The
schemes also need to be reviewed with machine learning ex-
perts for some insight into the strengths and weaknesses of
the schemes.

References
[1] J. P. Bigham and A. C. Cavender. Evaluating exist-

ing audio CAPTCHAs and an interface optimized for
non-visual use. In CHI ’09: Proceedings of the 27th
international conference on Human factors in comput-
ing systems, pages 1829–1838, New York, NY, USA,
2009. ACM.

[2] K. Chellapilla, K. Larson, P. Simard, and M. Czer-
winski. Computers beat Humans at Single Charac-
ter Recognition in Reading based Human Interaction
Proofs (HIPs). In In 2nd Conference on Email and Anti-
Spam, 2005.

[3] K. Chellapilla, K. Larson, P. Simard, and M. Czer-
winski. Designing Human Friendly Human Interaction
Proofs (HIPs). In CHI ’05: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 711–720, New York, NY, USA, 2005. ACM.

[4] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czer-
winski. Building Segmentation Based Human-friendly
Human Interaction Proofs (HIPs. In In Proceedings of
the Second International Workshop on Human Interac-
tive Proofs, pages 1–26. Springer-Verlag, 2005.

[5] J. Chew. John Chew’s Scrabble R©Lists.
http://www.math.toronto.edu/jjchew/
scrabble/lists/. Online; accessed 17-October-
2010.

[6] R. Datta, J. Li, and J. Z. Wang. IMAGINATION: a
robust image-based CAPTCHA generation system. In
MULTIMEDIA ’05: Proceedings of the 13th annual



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

ACM international conference on Multimedia, pages
331–334, New York, NY, USA, 2005. ACM.

[7] A. Desai and P. Patadia. Drag and Drop: A Better Ap-
proach to CAPTCHA. pages 1 –4, dec. 2009.

[8] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra:
a CAPTCHA that exploits interest-aligned manual im-
age categorization. In CCS ’07: Proceedings of the
14th ACM conference on Computer and communica-
tions security, pages 366–374, New York, NY, USA,
2007. ACM.

[9] H. Gao, H. Liu, D. Yao, X. Liu, and U. Aickelin. An
Audio CAPTCHA to Distinguish Humans from Com-
puters. pages 265 –269, jul. 2010.

[10] A. Hindle, M. W. Godfrey, and R. C. Holt. Reverse
Engineering CAPTCHAs, 2008.

[11] S. Hocevar. PWNtcha - Caca Labs. http://caca.
zoy.org/wiki/PWNtcha. Online; accessed 8-
October-2010.

[12] Microsoft. Sign up - Windows Live. https://
signup.live.com/signup.aspx?lic=1. On-
line; accessed 11-October-2010.

[13] Microsoft. Microsoft Human Interac-
tion Proof (HIP). http://download.
microsoft.com/download/3/2/0/
320e814a-d969-4c6c-a26e-2f3115032d4c/
Human_Interaction_Proof_Technical_
Overview.doc, 2006. Online; accessed 26-
September-2010.

[14] Pavel Simakov. Cracking WaterCap
CAPTCHA In 24 Hours. http://www.
softwaresecretweapons.com/jspwiki/
cracking_watercap_captcha_in_24_
hours, May 2007. Online; accessed 21-Septempber-
2010.

[15] Pavel Simakov. WaterCap Strong PHP CAPTCHA
With Negative Spaces And Shadows. http:
//www.softwaresecretweapons.com/
jspwiki/watercap_strong_php_captcha_
with_negative_spaces_and_shadows, May
2007. Online; accessed 21-Septempber-2010.

[16] S. A. Ross, J. A. Halderman, and A. Finkelstein.
Sketcha: a captcha based on line drawings of 3D mod-
els. In WWW ’10: Proceedings of the 19th interna-
tional conference on World wide web, pages 821–830,
New York, NY, USA, 2010. ACM.

[17] M. Shirali-Shahreza and S. Shirali-Shahreza.
CAPTCHA for Blind People. pages 995 –998,
dec. 2007.

[18] Statistics Finland. Online Statistics Course
– Demography and population statistics –
History of Finland’s population statistics –
What does your personal identity number tell?
http://www.stat.fi/tup/verkkokoulu/

data/vt/04/12/index_en.html. Online;
accessed 16-November-2010.

[19] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
ESP-PIX. http://server251.theory.cs.
cmu.edu/cgi-bin/esp-pix/esp-pix. Main
site: http://www.captcha.net. Online; ac-
cessed 11-October-2010.

[20] L. von Ahn, M. Blum, N. Hopper, and J. Lang-
ford. SQUIGL-PIX. http://server251.
theory.cs.cmu.edu/cgi-bin/sq-pix. Main
site: http://www.captcha.net. Online; ac-
cessed 11-October-2010.

[21] Wikipedia. Kanizsa triangle — Wikipedia, The
Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Kanizsa_
triangle&oldid=370923946, 2010. Online;
accessed 22-September-2010.

[22] Wikipedia user Fibonacci. Kanizsa_triangle.svg
— Wikimedia Commons. http://commons.
wikimedia.org/w/index.php?title=
File:Kanizsa_triangle.svg&oldid=
37290457, 2007. License: Creative Commons
Attribution-Share Alike 3.0 Unported. Online; ac-
cessed 22-September-2010.

[23] J. Yan and A. S. El Ahmad. A Low-cost Attack on
a Microsoft CAPTCHA. In CCS ’08: Proceedings of
the 15th ACM conference on Computer and communi-
cations security, pages 543–554, New York, NY, USA,
2008. ACM.

[24] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi,
and K. Cai. Attacks and Design of Image Recognition
CAPTCHAs. CCS’10, 2010.


