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Abstract
This paper briefly explains the cryptographic hash function
CubeHash.It analyzes the strength of CubeHash against the
various cryptanaysis technique.The paper summarizes all
the effective attacks that has been designed against the re-
duced version of the CubeHash.Along with this, paper an-
alyzes brute force attack on CubeHash with large message
size.Beside this, relatively new techniques of applying SAT
solvers to attack hash function is explored in context of
CubeHash.

1 Introduction
The cryptographic hash function is a sequence of steps that
can process an arbitrary block of data to produce a fixed
length bit strings such that any change in the data block must
produce a different bit string. The hash functions are primar-
ily used in digital signatures message authentication and cal-
culation of checksums etc. Currently, the cryptographic hash
functions such as MD5 , SHA-1 and SHA-2 are mainly used.
But of late, these hash functions have become vulnerable to
different attacks as collision, failing second preimage resis-
tance and thus forcing the need for new cryptographic hash
algorithm. The national institute of standards and technology
(NIST) has organized a competition to develop a new crypto-
graphic hash algorithm which will be called SHA-3. Cube-
Hash family of hash functions proposed by Daniel J. Bern-
stein is one of the submission which has advanced to second
round of the competition. This paper discusses the strength
of CubeHash algorithm against the various attacks and fea-
sibility of those attack under current processing power con-
straints.

2 Hash Function Security
Any cryptographic hash function must be resistant to follow-
ing attacks.

• Preimage attack: Given a hash value H, attackers try to
find a message having the value of hash i.e H = hash(m)

• 2nd-preimage attack: Given a input m attackers try to
find 2nd-preimage m′ 6= m such that h(m′) = h(m).

• Collision attack: Attackers try to find two different mes-
sages m and m′ such that hash(m′) = hash(m)

• Multicollison: Attackers try to generate a series of mes-
sages m1, m2, ... mN , such that hash(m1) = hash(m2) =
... = hash(mN ).

Figure 1: Sponge Construction [5]

Birthday paradox established that it is not possible to
avoid collision attack. But if a cryptographic hash func-
tion makes the problem space large enough to be com-
puted(searched) by the current available processors then it
can be said that the cryptographic hash function is computa-
tionally secure.

3 CubeHash
CubeHashr/b-h has three parameters namely r specifying the
number of state transformation rounds to be performed, b
number of bytes per message block , and h the length of the
hash bits.Apart from these parameters CubeHash maintains
an internal state of 1024 bits.First round NIST submission
recommends r = 8 , b = 1 and h ∈ {224,256,384,512} [3].
Later it was changed to r=16, b=32 for the second round[4].
CubeHash uses sponge construction, which is an iterated
construction for giving an output of arbitrary length by tak-
ing a variable-length input and subjecting it to a fixed-length
transformation (or permutation) [5]. The sponge construc-
tion is represented in figure-1[5]. As we can see the sponge
construction operates on a state of b=r+c bits. In case of
CubeHash r is nothing but message bytes b and c is the hid-
den bytes i.e. (128-b).

The CubeHash algorithm has five major steps : [4, 3]

• Initialize a 128-byte (1024-bit) state as a function of (h,
b, r).

• Convert the input message into a padded message. The
padded message consists of one or more b-byte blocks.
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• For each b-byte block of the padded message: xor the
block into the first b bytes of the state, and then trans-
form the state invertibly through r identical rounds.

• Finalize the state.

• Output the first h/8 bytes of the state.

The state transformation involves following steps: [4, 3,
2]. State transformation maps to the function f in the sponge
construction.

for i=0,....,15: x[i+16]=x[i+16]+x[i]
for i=0,....,15: y[i⊕8]=x[i]
for i=0,....,15: x[i]=y[i]≪7
for i=0,....,15: x[i]=x[i]⊕x[i+16]
for i=0,....,15: y[i⊕2]=x[i+16]
for i=0,....,15: x[i+16]=y[i]
for i=0,....,15: x[i+16]=x[i+16]+x[i]
for i=0,....,15: y[i⊕4]=x[i]
for i=0,....,15: x[i]=y[i]≪11
for i=0,....,15: x[i]=x[i]⊕ x[i+16]
for i=0,....,15: y[i⊕1]=x[i+16]
for i=0,....,15: x[i+16]=y[i]

4 Attacks
In this section, we will go through the various attacks that has
been employed against CubeHash and we will subsequently
measure the feasibility of these attacks. NIST is evaluating
each and every SHA-3 candidate with respect to SHA-2, so
we will also present a comparison with respect to collision
and preimage attack between the SHA-2 and CubeHash.

4.1 Generic attack
First,we will discuss two primitive cryptanalysis technique
that can be used to attack CubeHash(or any invertible hash
algorithm) .As we have seen in the above section, CubeHash
is the iteration of transformation of state and Xoring of first
b bytes of state and message.It is easier to attack CubeHash
for larger values of b and smaller rounds r as we will see in
the two methods presented below. The first method which
has been presented by the author of the CubeHash can be
classified under generic attack for finding preimage of any
message signed by CubeHash.[4]

• from (h, b, r) compute the initial state S0

• from the h-bit image plus some arbitrary (1024-h) bits,
invert 10r rounds and the “xor 1“ to get a state Sf before
finalization

• find two n-block sequences that map S0 (forward) and
Sf (backward), respectively, to two states that share the
last (1024-8b) bits

If we analyze the above method then one has to look for
2nb possible n-block input and search for a collision over
(128-b)*8 bits.Using birthday paradox we can find the col-
lision in 128-b part in 2((128−b)∗8)/2. For larger message

Figure 2: Schematic representation of state transformation

size, this problem space is quite small and preimage of Cube-
Hash can be found easily but for small message size block
the problem space grows exponentially and hence finding the
preimage becomes very hard.

Second attack can emanate from the concept of multicol-
lison [2]. From the initial state of S0 derived from (h,b,r)
one can find two n block sequence m and m′ that yield state0
(from forward direction) and the zero state(from backward
direction) respectively, to two intermediate states that share
(128-b) bytes. This can be represented with following equa-
tions. [1]

S0 ⊕ m1 → S1

S1 ⊕ m2 → .....
....... → S1

S1 ⊕ m′
2 → 0 ⊕ m′

1

Once we find any intermediate state whose last (128-b)
bytes matches with the any of the previous state, we can form
a colliding messages of the form.
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m||m′||0||0.....||0||M

where M is arbitrary sequence of message. This attack is also
of the complexity 2512−4b. Now, keeping in view the above
results we will compare CubeHash with the SHA-2 under
the requirement of SHA-3.There has been successful colli-
sion and preimage attacks on the reduced version of SHA-2
e.g. preimage attack consisting of 19 steps(SHA-256 , SHA-
512 consists of 64 steps and 80 steps respectively)[16].Later,
this was extended to preimage attack on 46 steps for SHA-
512 [18].The complexity of this attack is 2511.5 computa-
tion and 23*10 words of memory.Considering the fact that
SHA-512 has only 80 steps , it is very likely that there
will be improvements in future and hence weakening the
SHA-2 further.CubeHash-512 has the best collision attack
for 5/64( 64 rounds-r and 5 bytes-b),having complexity of
2231. CubeHash-512 has the preimage attack for 2513−4b for
any r/b. When we compare both SHA-512 and CubeHash-
512, we can see that for increased number of rounds for
CubeHash the collision attack seems to be very difficult.The
submitted version of CubeHash-16/32 does not have a fea-
sible collision attack and a preimage attack of greater than
2384 complexity. One of the advantages with CubeHash has
that it is a parametrized algorithm so the complexity of the
attack can be increased by increasing the number of rounds r
or by decreasing number of bytes b to make it strong against
the collision and preimage attack.

4.2 Exploiting symmetry of round function
Specification document of CubeHash has mentioned that the
initialization values for the state bytes have been selected to
avoid the symmetry of the round functions [4, 3].Aumasson
et. al[2] has found 15 symmetries classes of 2512(16 different
bytes in each class) states each.

The 15 symmetries found by Aumasson et.al are[2, 14]:

C1 : AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP
C2 : ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP
C3 : ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO
C4 : ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP
C5 : ABCDBADC EFGHFEHG IJKLJILK MNOPNMPO
C6 : ABCDCDAB EFGHGHEF IJKLKLIJ MNOPOPMN
C7 : ABCDDCBA EFGHHGFE IJKLLKJI MNOPPONM
C8 : ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP
C9 : ABCDEFGH BADCFEHG IJKLMNOP JILKNMPO
C10: ABCDEFGH CDABGHEF IJKLMNOP KLIJOPMN
C11: ABCDEFGH DCBAHGFE IJKLMNOP LKJIPONM
C12: ABCDEFGH EFGHABCD IJKLMNOP MNOPIJKL
C13: ABCDEFGH FEHGBADC IJKLMNOP NMPOJILK
C14: ABCDEFGH GHEFCDAB IJKLMNOP OPMNKLIJ
C15: ABCDEFGH HGFEDCBA IJKLMNOP PONMLKJI

If a state belongs to several classes then all its im-
ages(transformations, we will denote this by T) by the trans-
formation function will also belong to transformation of
these classes i.e. if S ∈(Ci ∩ Cj), then T(S) ∈(Ci ∩ Cj).
We can exploit these symmetries for finding preimages. If
we have a target hash digest we can find preimage for that
hash as follows[2]:

• reach a symmetric state in forward direction of round
function (of any class)

• reach (from backwards) another symmetric state (not
necessarily of the same class)

• from these two symmetric states in classes Ci and Cj

use null message blocks in both directions to reach two
states in Ci ∩ Cj

• find a collision by trying
√
x, (x=Ci ∩ Cj messages in

each direction.

The complexity of this attack depends on the Ci considered.
We will see the above step with an example, consider the
symmetry class C1 and message size of 5 bytes i.e. b=5.So
our message will be of form X000X and we always need to
preserve the equality s[i]=s[i+1]. Since each message con-
tains 2512 states , so there has to be at least 2256 trials in each
direction. We can also find collisions by exploiting the sym-
metry if we are allowed to initialize the state bytes such that
they were symmetric and in C1 ∩ C2 ∩ C4 ∩ C8 [2, 14]. For
example if the the initial sates of the CubeHashr/b-h is of the
form

AAAAAAAA AAAAAAAAA BBBBBBBBB
BBBBBBBB

then then each of the 233 intermediate states for the mes-
sage sequence of zeroes will also be an element of C1 ∩ C2

∩ C4 ∩ C8. We can find two same states with a probabil-
ity of 0.63 , thus giving collision(assuming T behaves ran-
domly).To summarize, this attack tries to find the symmetric
state in the round function of CubeHash and then follows the
method described in the generic attack to find the collision.
The symmetry in the state word(if we can find any) helps
in reducing the complexity of the attack. Ferguson et. AL
[14] has described an improved attack using the above men-
tioned symmetry classes which is also based on the method
described above.

5 Truncated Differential Path
One of the technique that has been utilized to cryptanalyze
the hash function is truncated differences. This has been
first studied by Kundsen[15] and is later extended by Peyrin
et. AL [7]. In this technique the basic idea is to search for
the non zero differences in the input and subsequent output
states. For example if we have two input state words which
differ say at word 5 and the resulting output word differ at 7
then we say that we have a differential path. if we explain it
further with an example, representing each state word with a
bit, then we will be able to represent the state word of Cube-
Hash by 4 bytes.Suppose we have a relation as 0x05000000
→ 0x00000800 then we can say that difference in word 5
and 7 in the input side resulted in difference of word 20 at
the output side.We will denote such differential path by

A → B

and the individual state word by Xi. For CubeHash-r/36
Brier et. AL[10] analyzed two differential path

path1: 0xa8000000 → 0x0a020000
path2: 0xa8000000 → 0x0a020000



Aalto University, T-110.5290 Seminar on Network Security Fall 2010

From the above path we can see difference between the two
state words is contained in only first 9 words. This fact can
be used to launch collision attack on the CubeHash-r/36 eas-
ily.At the start of each iteration, we have control on X0,
X1...X8 so we can carefully select these words to have the
same hash value for the two different message. Path 1 and
path 2 ,when analyzed for one round function will generate a
system of equation depicting their interdependency.Now, to
verify the selection of message we just need to check the cor-
rectness of the equation for our selected pair of message.For
example path1 evaluates to

Y⊕(A+Y) = X0 ≪ 7 ⊕ (B+X0) ≪ 7 where A,B are
constant, Y is the predetermined value and X0 we can select

such that it satisfies the above equation

One of the trick to solve the above equation is, if we take
the right hand side of the equation then Y ⊕ (A +Y) is equal
to 0xffffffff when y= A/2 and least significant bit of A is 1,
same is true for left hand side. So we can check for the valid
A and B to find the colliding message. The above differen-
tial path is searched by hand for the message block size (b)
of 36 bytes. But when the b reduces, finding the differen-
tial path becomes tougher. The idea over here is to find a
differential path as above that has differences of state words
contained within the length of message blocks. We can find
such differential path by writing a program that heuristically
looks for such truncated differential paths. Once the trun-
cated differential path is settled, then we can use a program
that will search for an input pair that verifies this path. Ap-
plying heuristic to search for such path has always resulted in
long time and frequent stack overflows for smaller message
blocks.

5.1 Linear Differential Path
Linear differential path has been the most simple attack on
the CubeHash. The state transformation of CubeHash in-
volves all linear operation except for the addition, but ad-
dition of two 32 bit words A and B can be replaced by
xor as is done in various previous work to analyze hash
functions[12, 11].In this technique first we insert the mes-
sage pair with known bit difference and observe the differ-
ence in the state words after round function. For the next
iteration we again choose message pair to erase all the differ-
ence caused in the previous round. This will lead to internal
collision. We will illustrate this with an example, suppose
we have inserted a single bit difference at position y then we
will have to select the message pair that erases the difference
at y+4,y+14, y+22 (all modulo 32).Similarly continue till the
last round, erasing the last byte difference.This sounds to be
simple for the linear operations but CubeHash has two non-
linear modular addition operation so the input differential
may not satisfy the output differential constraint because of
the carry generated by the addition of words. Basically there
are two possibilities because of the carry, it can either create
a difference or correct a difference at a particular bit position.
This requires that whenever addition of two pair of words
in CubeHash round function occurs we need to verify these
two conditions for the entire differential path. Verification of
these condition will ensure linear behavior of operation.We

can also represent this condition mathematically e.g.we have
A, B and A′ B′ then effect of non-linear addition can be han-
dled all the taking into account of all the condition which is
equal to hamming weight of (A ⊕ A′)∨(B⊕ B′).The number
of differential path depends upon the initial bit where the dif-
ference was first inserted e.g. for 0th bit there will be total of
246 conditions for total of two round of iteration. Using this
attack Dai and Brier et. AL [11, 10] found collision attacks
on CubeHash-2/89 and CubeHash-4/48 respectively.We can
illustrate our attack with an example to make the concept
more clear. We have these three differential path for 64 bytes
and 4 rounds(since there is three differential path).

D0 =
00000008000000000000000800000000
00000000000000000000000000000000
04000000000000000000000000000000
00000000000000000000000000000000

D1 =
88008000000000008800800000000000
00000000000000000000000000000000
00440040000000000000000000000000
00000000000000000000000000000000

D2 =
08000000000000000800000000000000
00000000000000000000000000000000
00040000000000000000000000000000
00000000000000000000000000000000

then the D2 will erase the difference caused in state words
by D0 and D1. We can have the two colliding message of the
form

Message1= M0||M1||ZERO
Message2 = (M0 ⊕ D0 )||(M1 ⊕ D1)||D2

We need to continue the process of XORing and appending
the two consecutive differential path till we get the collision.

5.2 Attacks using SAT solver
Boolean satisfiability(SAT) is one of the relatively new
and unexplored technique in attacking the hash func-
tions.Boolean satisfiability involves converting expression
into a boolean formulae e.g Conjecutive Normal Form
(CNF) and then checking if there exists any satisfiable as-
signment for the boolean expression.In case of CubeHash,
we only need to convert the addition and XOR operation
of round function because rotation and swap operation of
the CubeHash just interchange the bits without affecting the
truth table for the expression. The idea here is to represent
the 128 bytes state of the round function as 1024(128*8) lit-
erals. We will take two message and create the CNF for these
two messages and check whether there is any common sat-
isfiable assignments for the two CNF.If we are able to find
any such assignment then we have a collision. There are
many SAT solver e.g Davis-Putnam-Longemann-Loveland
(DPLL) algorithm, SAT solvers basically work by employ-
ing branching heuristics to look for the solution [13]. One of
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Round CNFs
1 18,024
2 36,048
3 54,072

Table 1: Number of CNF per round

the branching heuristics that can be used by DPLL is Maxi-
mum occurrences in clause of minimum sizes(MOMS).This
approach is preferred because it finds the non-reachability of
solution faster and is easier to implement as compared to oth-
ers. The major problem while finding colliding using SAT
solvers is that number of CNFs becomes larger with just few
rounds as shown in below table-1. There are some solutions
suggested in e.g using parallel DPLL and pruning the tree at
regular intervals [17], using glucose(the most efficient SAT
solvers), but none of these solutions have been able to scale
the attacks to higher rounds[6]. The maximum round that the
implementation with DPLL with MOMS could achieve was
2.

6 Results

We conducted few experiments with large values of mes-
sage block(b=128-122 bytes,r=8),below(Figure 3) is the plot
depicting the time taken to find the second pre-image for
messages of length ranging from 128 bytes to 120 bytes.
As it can be seen from the plot that finding preimage for
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Figure 3: No of message bytes v/s Time taken

the large message blocks is easy but it becomes infeasi-
ble after message block size becomes less than than 120
bytes.The most impressive results were achieved using dif-
ferential cryptanalysis methods . Brier et.AL. [8, 9] used
differential cryptanalysis to find the collision for CubeHash-
4/48 in total 237 computational.Despite all the encouraging
cryptanalysis result with the reduced version of the Cube-
Hash,it seems nearly infeasible to break the submitted ver-
sion of the CubeHash(b=16, r=8,h=512)and along with the
fact that CubeHash is as fast as SHA-2.In

7 Conclusion

CubeHash is extensively parametrized hash algorithm which
gives flexibility to apply it according to the situation. For
the message of size 1 byte and 8 bytes , no successful crypt-
analysis has come to the light to date.In current paper, we
have presented various methods of attacking CubeHash for
the reduced versions and have conducted few experiments
for larger message size with an intention to measure the time
to find the preimage.It has been fairly easy to get the preim-
age for larger block size(b), but as the block size reduces the
attack using these two methods becomes infeasible. Exam-
ination of attacks using SAT solvers lead to the conclusion
that it is very difficult to find the collision for higher num-
ber of rounds because the solution tree increases exponen-
tially.The other methods that have been discussed in this pa-
per has been able to find preimage or collision attack for the
slightly reduced version of CubeHash. If these attacks are
extended to the submitted version of CubeHash, then they
result in infeasible complexity (> 2384).
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