
Methods for Energy Modelling of Embedded Operating System

Jari Hyvärinen
Helsinki University of Technology

jahyvari@cc.hut.fi

Abstract

Energy efficiency of mobile devices becomes more and more
important with the increase in their capabilities. Since the
operating system of these devices is big energy user, know-
ing more about it’s power usage is important.

This paper compares the energy modelling methods cre-
ated by Tan et al. and Li et al. I present the summaries of
their methods and discuss their suitability for other operating
systems than those presented in their papers.

KEYWORDS: energy modelling, operating system, embed-
ded system

1 Introduction

With the increase in computing power, mobile devices are
no longer designed to perform only one task. Mobile phones
used to be plain phones, but now they have digital cameras,
GPS-location services and similar features built in. This in-
crease in number of mobile device’s functions means that
their embedded operating systems have replaced other soft-
ware architectures in mobile devices, since embedded oper-
ating systems can handle addition of new features most eas-
ily.

While the computing power of mobile devices has been
rising rapidly, the battery capacity hasn’t increased as fast.
This means that energy efficiency has become more and
more important and a big part of the energy usage is now
the embedded operating system.

Companies need to get their products to the market place
fast and it is always much better to build system right first
time than to try correct it later. Knowing the energy model
of the operating system that will be used gives the develop-
ers valuable information. With it they can make big deci-
sions early in software development. Thus, having a model
of operating system’s energy usage available during the de-
sign phase is important.

Another way of improving the energy efficiency of a de-
vice is managing the system’s power consumption at run-
time. Knowing the energy model of the operating system
helps in finding the right balance between performance and
energy usage.

This paper compares two recent energy modelling meth-
ods made by Tan et al. [12] and Li et al. [9]. Both groups
use a similar approach to the problem: measure the energy
usage of the operating system’s basic routines with test pro-
grams and then create a model from the results. However,
while Tan et al. focused on producing an energy model that

would be helpful in design phase, Li et al. wanted to make
an energy model that could be used to manage the system’s
energy usage in run-time.

In Section 2 I present the energy modelling methods cre-
ated by Tan et al. and Li et al and in section 3 compare them
to each other. Section 4 considers the methods suitability
to be used on other operating systems. Section 5 discusses
possible improvements to methods and section 6 presents
the conclusions.

2 Energy Modelling Methods

2.1 Macromodel Method

2.1.1 Method

The method developed by Tan et al. [12] gives an energy
model that is useful for comparing the effect of different
design decisions on the energy usage of the ready product.
In this method operating system is considered to be one big
box. Through the box go multiple paths and each path corre-
sponds to different work done by the operating system. Paths
can be divided into two different groups.

First group of paths that are those generated by system
calls from applications. This means that analysing the en-
ergy usage of these paths gives valuable insight into devel-
opment of an application. The starting point for this analysis
is operating system’s source code. From the source code de-
velopers should pick those system calls that they believe will
be heavily used or significant for deciding between differ-
ent software architectures. After this, a test program should
be coded for each selected path and run through a simulator.
For simulator Tan et al. used both Sparcsim [6] and EMSIM
[11]. Both of these simulators report the used energy for
each function call. This method uses the results from sim-
ulators to calculate average energy usage for selected paths.
The resulting energy model can then be used to choose be-
tween different architectural solutions or as part of operating
system’s total energy usage model.

The second group is paths that are generated by interrup-
tions and other operating systems’ internal workings, like
context switching. Energy usage of these paths can also be
measured in energy usage simulators by using suitable test-
ing programs. When grouped together, the results from both
paths form the model of the operating system’s energy usage.

2.1.2 Experiments

Tan et al. tested their method by creating energy models
for two different operating systems,µC/OS[8] and Linux



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

OS(arm-linux v2.2.2)[1]. They used Sparsim to collect the
energy data required for characterization forµC/OS and EM-
SIM for Linux OS. After the group had completed the mod-
els, they used the same energy simulators to measure the en-
ergy usage of different test programs and compared them to
predicted values.

The model forµC/OS gave values that were all within 2%
of the measured values. In the Linux OS’s case the results
were more mixed, with most of the results staying within
5% of the measured values. However there were also cases
where the difference was bigger, from 11.2% all the way to
27.5%. The only case where the error was over 17% was
freeing allocated memory, which was among the smallest in
actual energy usage. This level of accuracy is still usable for
choosing between different software architectures.

2.1.3 Limitations

The biggest limitation of the method created by Tan et al.
is that it is designed with only certain types of operating
systems in mind. The operating system needs to be either
monolithic or microkernel-based with synchronous message
passing mechanism. Monolithic operating systems run all
their services in same memory area with the main kernel
thread and both Linux andµC/OS belong to this group.
Microkernel-based operating systems have very minimal set
of system calls to access hardware and all the services are
run in user-space. L4[3] is an example of microkernel-based
operating system with synchronous message passing mech-
anism. This means that the method doesn’t work as such for
other OS types.

Second limitation is that this method uses the operating
system’s source code in the beginning of the process. The
source code is used in creating of test programs that trie
to measure the operating system’s interrupts’ energy costs.
Without knowledge of the operating system’s internal me-
chanics measuring the energy usage of these interrupts is
harder.

2.2 Method for Run-Time Model

2.2.1 Method

Li et al. present another method for estimating energy usage
in their paper[9]. Their goal was to create a model that is
usable at run-time for power management. The method uses
system power simulator called SoftWatt [7] to measure the
system’s energy usage and the model is built based on the
results.

This method doesn’t separate the operating system’s inter-
rupts and system calls into different group, instead they are
all handled in the same way as one group and called operat-
ing system’s routines. The SoftWatt is used to measure the
energy usage of each routine. Initial testing showed that sim-
ply calculating the average cost of operating system’s basic
routines wasn’t accurate enough. However, measuring each
routine’s energy usage separately gave good results.

One important finding of their research was that even the
energy usage of one single routine could change dramati-
cally. Upon closer examination they found that the power

usage of the routines correlated with the number of instruc-
tions the processor completed every cycle while processing
the routines. So, if two routines are handled simultaneously,
it will consume more energy than completing them one af-
ter another. Since the correlation of instructions per cycle
and energy usage is linear, including this correlation number
in energy model means that the model can give results that
are more accurate without noticeable increase in the model’s
complexity.

The energy model that this method gives doesn’t require
much memory, only 2 numbers are required for each system
call and interrupt: base energy usage and number for correla-
tion. Since the energy usage is in linear correlation with the
instructions completed per cycle, it means that there isn’t big
overhead in calculating the estimated power usage from the
base energy usage and the number describing how routine’s
power usage changes with increased processor load. These
two facts make this energy model well suited for run-time
managing of devices power consumption.

2.2.2 Experiments

Li et al. tested their method on a simulated version of
SGI IRIX 5.3[2]. They used operating system simulator
SimOS[10] to run simulated operating system and SoftWatt
to measure the energy usage. This made possible for them
to measure the energy usage of each routine of the operating
system.

For the testing Li et al. used two different sets of test pro-
grams. The first had programs that were used for collecting
the data of energy usage. This data was then used to make the
energy model. The second group of programs was used to
test how well the numbers given by the energy model would
match the measured values. The results showed that the esti-
mates of single routine’s power consumption were all within
6% from measured value.

2.2.3 Limitations

Since Li et al. use the same basic method as Tan et al., all
the same limitations in the operating systems apply to their
method. However, since this method requires more detailed
information from the simulator, finding suitable simulator
will be harder than with the method of Tan et al.

3 Comparison

3.1 General Comparison

The basic idea of both modelling methods is the same: use
a simulator to measure energy usage of operating system’s
basic routines. Despite this the different goals of the groups
resulted in slightly different methods for energy modelling.

Tan et al. concentrated on giving designers new tools for
comparing different architecture solutions and operating sys-
tems. Because of this there isn’t need for their method to
analyse whole operating system. Instead, it concentrates on
modelling only those of the operating system’s routines that
are either heavily used or that can affect the architectural de-
sign of the application. This means that the number of things



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

that need to be measured in the energy usage simulator is
much smaller than in the method proposed by Li et al.

Li et al. wanted to create method that creates an energy
model for run-time power management. Because they in-
cluded the number of instructions the processor completes
per cycle, their model gives accurate results even when the
processor’s load varies. Since the model is meant for power
management, it measures energy usage of every routine of
operating system. This means that the time needed to run the
simulation is longer than in method created by Tan et al. On
the other hand, the resulting energy model can also be used
for the same purposes that energy model of Tan et al. is used
for.

The symmetry of these two methods works also in the
other direction. When using the method created by Tan et
al., if you measure the power usage of every system call and
interrupt of the operating system, you get an energy model
quite similar to that created by the method of Li et al. The
only difference would be, that this energy model wouldn’t
include any information on how the energy consumption of
operating system’s routines change in relation to the proces-
sor’s load(instructions per cycle). This means that the energy
model could be used for run-time management of energy us-
age, but the result wouldn’t be as good as those you would
get by using the method of Li et al, since it wouldn’t account
for the changes in the energy usage caused by the processor’s
varying load.

3.2 Methodology

Since the methods created by Tan et al. and Li et al. are so
similar, it is possible to present generalised methodology for
both of them. The steps of the methodology are:

1. Analyse

2. Select test programs

3. Measure energy usage

4. Model-fitting

5. Verify results

In the first step the operating system is analysed. The pur-
pose of this analyse is to identify those system calls and in-
terrupts that will be inspected in later steps. Those who only
want to use the resulting energy model for architectural con-
siderations can use the method of Tan et al. and inspect only
few routines, but if the energy model will be used for run-
time power management, then every system call and inter-
rupt should be included.

The selecting of test programs is heavily influenced by ca-
pabilities of the testing system. Li et al. had access to a
system that was capable of measuring the energy usage of
individual system calls and interruptions. Because of this
they could use general testing programs and still get accu-
rate numbers. The simulators used by Tan et al. couldn’t
separate the energy usage of different system calls and inter-
rupts from each other, so the group made their own testing
programs that only used specific system calls. This way they
could separate the energy consumption of different interrupts

from the actual energy usage of each system call. After the
test programs have been selected, measuring the energy us-
age of system calls and interrupts is straightforward.

In the fourth step the measured energy usages are fit-
ted into macromodel templates. Macromodel templates are
equations in the form:

E = c1R1 + c2R2 + ... + cnRn

The E is energy usage of the system call or interrupt,Rjs
are the parameters andcjs are the variables that need to be
determined. The number of the variables is determined by
the inspected properties of the system call. If the system call
is tested with with just one input,then there is only one vari-
able. Testing with varying lengths of input or with different
processor loads would raise the number to two, and testing
with both different inputs and processor loads would raise it
to three.

Last step is verifying that the energy model corresponds to
actual energy usage. This is done by using the energy model
to predict the energy usage of program and then comparing
the prediction with measured values from a test program.

4 Other Operating Systems

In this section I present some popular embedded operat-
ing systems consider the presented methods suitability for
analysing them.

4.1 Symbian OS

Symbian OS[4] is currently the most used operating system
in smartphones. It is designed from the start to be used
in mobile devices and minimizing the use of resources has
been an important design goal. This combined with the fact
that phone manufacturers are very supportive for developers
makes Symbian popular choice for developers. This means
that an energy model for Symbian would be useful for many
people.

Nokia has provided a program for monitoring energy us-
age of applications on phones based on s60. This means that
at least on that platform there is way to measure the energy
usage of Symbian. The accuracy of the monitoring program
isn’t too good, but could be enough if the test programs are
made to run for longer time periods. However, differentiat-
ing operating system’s interrupts from the tested system calls
won’t be easy at this resolution.

Symbian has a hybrid kernel. From microkernel side it
uses the idea of keeping the kernel itself small and running
the operating system’s services in user mode. The excep-
tion to this is that device drivers are included inside the ker-
nel. However, because the kernel uses asynchronous mes-
sage passing, the proposed methods don’t work as they are.

4.2 Windows CE

Windows CE[5] is version of Microsoft’s Windows that is
designed to be used in embedded systems. For this reason it
is designed to work on limited system resources.



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

Microsoft has made available the kernels source code to
make it easier to develop applications for it. This makes
Windows CE more suited for energy modelling than other
versions of Windows.

Even though Windows CE’s kernel is also hybrid between
microkernel and monolithic kernel like other versions of
Windows, it isn’t just simplified version of regular Windows
versions. Instead Windows CE is more modular so that man-
ufacturers can use only the needed parts of it in their devices.
From the energy modelling perspective the bad side of this is
that the energy model of the operating system isn’t as useful
since the operating system isn’t same for everyone.

All in all Windows CE looks like it would be good target
for energy modelling because of the availability of source
code and the kernel architecture. The problem is in measur-
ing the power usage of the system calls and interrupts. Since
Windows CE supports so many different hardware platforms,
finding simulator for measuring the energy usage on specific
hardware is hard.

5 Challenges & Improvements

5.1 Challenges

One big open question is how well does the method of Li et
al. work with different operating systems or hardware? Does
the instructions per cycle affect the energy usage in just as
straight forward way with different hardware and operating
system? The experiments done by Tan et al. showed that
although one operating system and hardware pair gave really
good results, the other was significantly different. Clearly
there is need for some testing to make sure that the principle
is widely usable.

Both methods also share the same problem: they need a
simulator that can measure the energy usage when test pro-
grams are run in the operating system. Simulators are usu-
ally designed to simulate only a couple of different operating
systems on one hardware configuration. Because of this, it is
difficult to compare two different operating systems on same
hardware, unless one simulator supports both of them. Of
course, if the intention is just trying to make design decision
on one particular operating system(intended use of method
from Tan et al.) or trying to manage the operating system’s
energy usage run-time(intended use of method from Li et
al.), you don’t need to compare different operating systems.
Still, considering that there are tens of embedded operating
systems in use, lack of simulators does limit the methods’
usefulness.

5.2 Improvements

The energy modelling methods presented by Tan et al. and
Li et al. don’t leave much room for improvement. The sim-
ulator side of methods is where the problems are. Because
both methods need to know the energy usage of the operating
system’s routines, a general level simulator doesn’t suffice.
Since the amounts of energy used per one use of a routine
are measured in less than microjoules [12], measuring them
without a simulator doesn’t seem practical.

The other direction where improvements can be found
is trying to make the methods work with Operating sys-
tems with other kernel architectures than monolithic and mi-
crokernels with synchronous message passing mechanism.
Microkernels with asynchronous message passing mecha-
nism seem to next logical step, since microkernels with syn-
chronous message passing mechanism already work. The
basic idea of measuring the energy cost of operating system’s
routines would still be the same. Only getting the correct
value would be harder if the simulator can’t measure op-
erating system’s interrupts’ energy usage, since with asyn-
chronous message passing triggering the interrupts at pre-
dictable time is harder.

6 Conclusions

The importance of energy usage is growing because com-
putation power of modern mobile devices, along with their
power consumption, increases faster than battery capacity.
The operating system is a big part of total energy use of de-
vice, therefore analysing the characteristics of it can guide
the development of new devices.

Both Tan et al. and Li et al. have developed methods
that create an energy model for an operating system and even
though their basic idea is same, intended use of the energy
models resulted in different methods. This paper presented
these two methods and compared their similarities and differ-
ences. Tan et al. created a method that needs less simulation
in energy usage simulator and gives numbers only for those
parts of operating system that user is interested in. By con-
trast, Li et al. created method that requires more simulation
time but that results in model which is usable for run-time
power management.

Since the methods are quite similar to each other, they
also share same weaknesses. Both require simulator that can
measure the energy usage of the operating system’s routines.
This can be problem because there are many embedded oper-
ating systems in use today and not all of them have simulator
for energy usage. Both methods are also limited in the types
of operating systems they can analyse.

Symbian and Windows CE are both popular embedded op-
erating systems and I considered the suitability of the energy
modelling methods on them. Common problem for them is
the lack of suitable energy simulators. Also, since Symbian’s
kernel is microkernel with asynchronous message passing,
creating it’s energy model is harder.

References

[1] Arm linux. URL: http://www.arm.linux.
org.uk/ .

[2] Irix. Silicon Graphics, Inc. URL:http://www.
sgi.com/products/software/irix/ .

[3] L4. URL: http://os.inf.tu-dresden.de/
L4/ .

[4] Symbian os. Symbian Ltd. URL:http://www.
symbian.com/ ,.



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

[5] Windows ce. Microsoft Corporation. URL:
http://msdn.microsoft.com/embedded/
windowsce/default.aspx ,.

[6] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and
N. K. Jha. Power analysis of embedded operating sys-
tems. InDAC ’00: Proceedings of the 37th conference
on Design automation, pages 312–315, New York, NY,
USA, 2000. ACM.

[7] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, M. Kandemir, T. Li, and L. K. John.
Using complete machine simulation for software power
estimation: The softwatt approach. InHPCA ’02: Pro-
ceedings of the 8th International Symposium on High-
Performance Computer Architecture, page 141, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[8] J. J. Labrosse.Microc/OS-II. R & D Books, 1998.

[9] T. Li and L. K. John. Run-time modeling and estima-
tion of operating system power consumption.SIGMET-
RICS Perform. Eval. Rev., 31(1):160–171, 2003.

[10] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: the simos ap-
proach. Parallel & Distributed Technology: Systems
& Applications, IEEE [see also IEEE Concurrency],
3(4):34–43, Winter 1995.

[11] T. Tan, A. Raghunathan, and N. Jha. A simula-
tion framework for energy-consumption analysis of os-
driven embedded applications.Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Trans-
actions on, 22(9):1284–1294, Sept. 2003.

[12] T. K. Tan, A. Raghunathan, and N. K. Jha. Energy
macromodeling of embedded operating systems.Trans.
on Embedded Computing Sys., 4(1):231–254, 2005.


